01
А
Астрономия
02
Б
Биология
03
Г
Гуманитарные науки
04
М
Математика и CS
05
Мд
Медицина
06
Нз
Науки о Земле
07
С
Сельское хозяйство
08
Т
Технические науки
09
Ф
Физика
10
Х
Химия и науки о материалах
Химия и науки о материалах
17 апреля

Двумерный теллурид кадмия свернули в нанотрубки

biotechaz/Flickr

Химики обнаружили, что двумерные листы теллурида кадмия могут самопроизвольно сворачиваться в нанотрубки, что может найти применение в электронике и фотонике. Результаты исследования российских и японских ученых были опубликованы в журнале Chemistry of Materials.

В ходе работы ученые исследовали двумерные полупроводниковые материалы. К ним относятся, например, графен, фосфорен, двумерные слои дисульфида молибдена, двумерные перовскиты — в последнее время они привлекают огромный интерес учёных. Такие материалы представляют собой атомно-тонкие кристаллы с двумерными электронными свойствами. Учёные предполагают, что эти двумерные материалы можно использовать для создания новых приборов.

«Мы изучали двумерный теллурид кадмия CdTe и обнаружили неожиданный эффект спонтанного сворачивания ультратонких, толщиной всего один нанометр, двумерных листов этого полупроводника, которые иначе называются коллоидными квантовыми колодцами», — рассказал один из авторов работы Роман Васильев, кандидат химических наук, доцент химического факультета и факультета наук о материалах МГУ имени М.В. Ломоносова.

Коллоидные квантовые колодцы — это новое поколение коллоидных квантовых точек. Квантовые точки обладают выраженными люминесцентными свойствами и уже нашли применение в коммерчески выпускаемых устройствах, например, телевизорах. Квантовые колодцы — двумерный вариант квантовых точек — пока что только исследуются, но они обладают чрезвычайно узкими полосами люминесценции, что имеет большое значение для высокой чистоты цветопередачи в светоизлучающих устройствах.

Ученые исследовали свойства двумерных листов теллурида кадмия, меняя органические молекулы, которые были «пришиты» к их поверхности и обеспечивали стабильность наночастиц. Для синтеза наночастиц двумерного теллурида кадмия химики использовали коллоидный метод и получили их в колбе. Для этого химики провели реакцию в органическом растворителе в присутствии поверхностно-активных веществ. Подбирая условия, исследователи смогли добиться роста наночастиц в виде атомно-тонких листов.

Сначала авторы вырастили плоские двумерные листы, покрытые стабилизатором — олеиновой кислотой. Удалось получить размеры листов в сотни нанометров при толщине строго в один нанометр. Затем учёные стали заменять молекулы олеиновой кислоты на другие органические молекулы и анализировать размер, форму получившихся наночастиц, их состав и кристаллическую структуру.

2e07b6597fdb1a0c331e641993dbea6d64672d43
Изображения просвечивающей электронной микроскопии для двумерных листов теллурида кадмия. На левой панели — исходные листы с плоской формой, на правой — листы после сворачивания в свертки. В правом верхнем углу дано схематичное изображение свернутого листа.
Роман Васильев/МГУ

Во время работы они обнаружили, что при использовании специального класса стабилизаторов — тиолов — плоские листы теллурида кадмия свернулись в аккуратные и однородные трубочки. Присоединяясь к поверхности листа, молекулы тиола увеличивают толщину ровно на один монослой (0,15 нанометра) и вызывают механические напряжения, которые приводят к сворачиванию листа в строго определенном кристаллографическом направлении. Сворачивание происходит у всех наночастиц одновременно, и радиус «свёртка» одинаков для всех наноструктур.

«Проведенное исследование открывает новые возможности для манипуляций с двумерными материалами и наночастицами. Весьма неожиданный эффект сворачивания напоминает оригами, только в нашем случае листы имеют толщину один нанометр. Возможность управлять пространственной формой наночастиц может найти применение в создании оптических материалов с анизотропными свойствами и с поляризованной люминесценцией. С их помощью можно разработать активные светоизлучающие матрицы для дисплеев, которые уменьшат энергопотребление и увеличат яркость и контрастность устройства. Можно также предположить возможность конструирования новых наноустройств, например, транзисторов с формой трубки. Данные интересные свойства могут быть востребованы в новых поколениях светоизлучающих и сенсорных устройств, в оптических и оптоэлектронных технологиях и нанотехнологиях», — заключил ученый.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.

Комментарии

Все комментарии
Обсуждаемое