01
А
Астрономия
02
Б
Биология
03
Г
Гуманитарные науки
04
М
Математика и CS
05
Мд
Медицина
06
Нз
Науки о Земле
07
С
Сельское хозяйство
08
Т
Технические науки
09
Ф
Физика
10
Х
Химия и науки о материалах
Химия и науки о материалах
25 июня

Космические эксперименты привели к созданию нового способа 3D-биопечати

Физик Стивен Хокинг во время эксперимента по достижению искусственной гравитации
Jim Campbell/Aero-News Network

Разработана новая технология 3D-печати биологических тканей, которая стала возможна благодаря исследованиям магнитной левитации в условиях невесомости. В перспективе разработка поможет создавать чувствительные к радиации биологические конструкции и восстанавливать поврежденные ткани и органы человека. Результаты опубликованы в журнале Biofabrication. В основу технологии легли результаты экспериментальных исследований, поддержанные грантом Российского научного фонда (РНФ).

Существует множество методов трехмерной биопечати. Большинство из них использует некоторый каркас, на который слой за слоем наносятся клетки биологической ткани. Полученный объемный материал затем отправляется в инкубатор, где продолжается выращивание. Существуют способы, в которых биологические объекты создаются без применения каркаса, например магнитный биопринтинг, когда клеточный материал направляется в нужное место с помощью магнитных полей.В таком случае клетки необходимо каким-то образом помечать магнитными наночастицами.

«В период с 2010 по 2017 год на борту российского сегмента Международной космической станции выполнен цикл уникальных экспериментальных исследований на установке "Кулоновский кристалл". Основным элементом установки является электромагнит, создающий специфическое неоднородное магнитное поле, в котором в условиях микрогравитации могут формироваться структуры из диамагнитных частиц (которые намагничиваются против направления магнитного поля)», — рассказал один из авторов исследования, заведующий лабораторией диагностики пылевой плазмы ОИВТ РАН Михаил Васильев.

Ученые разработали новый метод биопринтинга, который позволяет создавать трехмерные биологические объекты без использования каркаса и магнитных меток. Это стало возможно благодаря исследованиям ученых из Объединенного института высоких температур Российской академии наук (ОИВТ РАН).

Сотрудники ОИВТ РАН в рамках своего экспериментального исследования описали, как ведут себя мелкие заряженные частицы, помещенные в магнитное поле специальной формы в условиях микрогравитации, то есть в невесомости. Помимо этого, ученые составили математическую модель этого процесса на основе методов молекулярной динамики. Благодаря этим результатам стало понятно, как можно получать однородные и протяженные трехмерные структуры из тысяч частиц.

У ранее существовавших методик управления биопечатью с помощью магнитных полей был ряд ограничений, связанных с гравитацией. Чтобы уменьшить влияние гравитационных сил, можно увеличить мощность магнитов, контролирующих магнитное поле, однако это значительно усложняет установку. Второй способ — уменьшить гравитацию. По этому пути и пошла команда российских и зарубежных ученых. Новый метод получил название «формативная трехмерная биофабрикация», он позволяет создавать трехмерные биологические структуры не послойно, а сразу со всех сторон. Для того, чтобы управлять формой таких объектов, ученые использовали экспериментальные данные и результаты математического моделирования, полученные учеными ОИВТ РАН.

«Результаты космического эксперимента "Кулоновский кристалл" по исследованию формирования пространственно-упорядоченных структур легли в основу нового метода для формативной трехмерной биофабрикации тканевых конструкций, осуществляемой методом программируемой самосборки живых тканей и органов в условиях земного притяжения и условиях микрогравитации посредством неоднородного магнитного поля», — добавил ученый.

6572eeb6221819136ca163db8529db31d4618d19
Фотографии полученных тканевых конструкций при различном увеличении
Vladislav A Parfenov et al // Biofabrication, 2018

Биопринтеры на основе новой технологии смогут создавать различные биологические конструкции, которые можно будет использовать, например, для того, чтобы оценивать неблагоприятное действие космической радиации на здоровье космонавтов при длительных космических миссиях. Также, по заявлению авторов, в перспективе эта технология сможет восстанавливать функцию поврежденных тканей и органов.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.

Комментарии

Все комментарии
Обсуждаемое