01
А
Астрономия
02
Б
Биология
03
Г
Гуманитарные науки
04
М
Математика и CS
05
Мд
Медицина
06
Нз
Науки о Земле
07
С
Сельское хозяйство
08
Т
Технические науки
09
Ф
Физика
10
Х
Химия и науки о материалах
Физика
22 июля

Создан новый метаматериал для солнечных батарей

Peter Jostiak/Flickr

Российские ученые из НИТУ «МИСиС» разработали метаматериал-диэлектрик, который можно использовать для создания нанооптических устройств и солнечных батарей. Статья о разработке опубликована в журнале Laser&Photonics Reviews.

По сравнению с металлическими метаматериалами диэлектрические более перспективны, так как они не нагреваются под действием электромагнитного излучения, что минимизирует рассеивание энергии. Кроме того, все материалы такого типа можно масштабировать в оптическом диапазоне и контролировать их резонанс.

Ученые из МИСиС в своей работе исследовали анаполь – неизлучающий рассеиватель, через который беспрепятственно может проходить электромагнитное излучение. Ранее они совместно с коллегами из Крита установили, что анаполь – идеальный резонатор. При облучении извне он сохраняет всю полученную энергию внутри, электромагнитные колебания при этом затухают крайне медленно.

Работа ученых демонстрирует новое перспективное направление в разработке метаматериалов. Ранее для создания диэлектрических метаматериалов нужно было изготовить сложные диэлектрические (сферические или цилиндрические) наночастицы или же напылять на основу различные нанослои. В своей работе ученые показали, что метаматериалы можно изготавливать, перфорируя отверстия в тонкой пленке кремния или другого диэлектрика. Один из самых легких путей – использование FIB пучка – фокусируемого ионного пучка, который позволяет создавать отверстия до 5 нм.

0ef3494bf721f8e0d3cee580efd1ded790aa1570
Пресс-служба МИСиС
Предложенный метаматериал. m – магнитный дипольный момент, j – петли электрического тока, T – тороидальный дипольный момент

«В теоретической части исследования нам удалось показать, что в оптическом диапазоне частот можно будет возбудить особое анапольное состояние, которое перспективно для сильной локализации электромагнитных полей, а также сенсоров. Кроме того, мы установили, что такой метаматериал может быть прозрачен для электромагнитных волн, что в реальных экспериментах с кремнием должно показать очевидность нашей методики и существенно повысить прозрачность кремниевых пластин, например, для применения в солнечных батареях», – говорит руководитель проекта Алексей Башарин.

Разработанный метаматериал предлагается использовать в кремниевой нанооптике и солнечных батареях. Работа над экспериментальной частью исследования продолжается.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.

Комментарии

Все комментарии
Обсуждаемое