Опубликовано 16 сентября 2019, 22:22

Найдена самая массивная нейтронная звезда

Двойная система из пульсара и белого карлика в представлении художника

Двойная система из пульсара и белого карлика в представлении художника

© EFE

Международной группе исследователей удалось обнаружить самую массивную нейтронную звезду на сегодняшний день. Об этом ученые рассказали на страницах журнала Nature Astronomy.

Нейтронные звезды — это сжатые остатки массивных звезд, ставших сверхновыми. Они возникают, когда светила с большой массой взрываются и их ядра коллапсируют, а протоны и электроны сливаются друг с другом, образуя нейтроны. Эти частицы не имеют электрического заряда и поэтому не отталкиваются друг от друга, а значит, могут образовывать очень плотную материю.

Пульсары — один из видов нейтронных звезд — представляют собой объекты, которые вращаются вокруг своей оси с невероятной скоростью и являются источниками излучения в разном диапазоне длин волн. Излучаемые этими объектами волны позволяют ученым вычислять многие их характеристики. Как правило, нейтронные звезды имеют несколько десятков километров в диаметре и массу, сопоставимую с солнечной или немного большую.

Работавшие на радиотелескопе Green Bank (GBT) ученые под руководством сотрудника Университета Виргинии Ханны Кромарти нашли пульсар под названием J0740+6620 в 4,6 тыс. световых лет от Земли. Его масса составляет 2,17 массы Солнца, а диаметр — около 20–30 километров. Миллисекундный пульсар оказался составляющей двойной системы — наряду с белым карликом. Обнаружение этого объекта приближает ученых к пониманию того, где находится граница между превращением звезды в черную дыру или пульсар.

Эффект Шапиро

Эффект Шапиро

© BSaxton/NRAO/AUI/NSF

Массу пульсара ученые измеряли с помощью явления, известного как эффект Шапиро. Оно заключается в том, что гравитация от звезды-компаньона рядом с пульсаром искривляет окружающее ее пространство в соответствии с общей теорией относительности Эйнштейна. Это заставляет импульсы от нейтронной звезды двигаться немного дольше, поскольку они путешествуют через искаженное пространство-время вокруг белого карлика. Эта задержка позволяет вычислить массу белого карлика, что в свою очередь обеспечивает измерение массы нейтронной звезды.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.