Полимерные наносферы помогли повысить антиоксидантные свойства бета-каротина
Ученые предложили способ улучшить антиоксидантные свойства бета-каротина за счет полиплексов — полимерных наносфер. Они служат транспортом и защитной оболочкой для молекул бета-каротина и помогают продлевать его биологическую активность. Результаты исследования опубликованы в журнале International Journal of Biological Macromolecules.
Бета-каротин — наиболее известная и распространенная форма провитамина А. Это мощный антиоксидант, который защищает клетки от повреждающего действия свободных радикалов, стимулирует иммунитет, предотвращает новообразования, поддерживает восстановительные процессы в эпителии кожи и слизистых, участвует в образовании зрительного пигмента родопсина. Однако он нестабилен и плохо растворим в воде, что ограничивает его применение в фармакологии.
«В данном случае бета-каротин — это модельное вещество, на котором мы демонстрируем возможности нашей системы. Идея заключалась в разработке специальных носителей на основе натуральных полимеров, чтобы молекулы бета-каротина доставлялись в нужное место и высвобождались не единовременно, а постепенно, пролонгировано. Также нужно было повысить водорастворимость бета-каротина для его лучшей сорбции в организме. В статье мы предложили помещать молекулы бета-каротина в сферы — полиплексы — из хитозана и нуклеиновых кислот. Мы использовали простой метод получения полиплексов, основанный исключительно на физическом взаимодействии молекул, он не требует каких-либо глобальных установок и растворителей», — говорит один из авторов работы, научный сотрудник Томского политехнического университета (ТПУ) Антонио Ди Мартино.
Процесс синтеза полиплексов не требует очищать полученное вещество от токсичных примесей и побочных продуктов. По словам авторов статьи, это чрезвычайно важно в контексте использования такой технологии для создания новых препаратов в условиях крупного производства.
«Бета-каротин мы помещали внутрь в момент образования комплекса. Это позволяет добиться высокой нагрузки вещества за одну операцию и гарантирует внедрение вещества именно внутрь носителя, а не просто его адсорбцию на поверхности. Это важный момент в вопросе контроля высвобождения вещества», — поясняет исследователь. Размер получаемых полиплексов составляет 100 нанометров, и каждая такая сфера может содержать до 400 мкг бета-каротина.
«Высвобождение активного вещества — бета-каротина — происходит за счет естественного и постепенного разрушения полиплекса под действием внешних условий: кислотности, pH, температуры, дополнительных аминокислот и ферментов. В зависимости от этих условий для высвобождения до 90% внедренного в полиплекс бета-каротина может потребоваться как несколько часов, так и одна неделя», — добавляет Ди Мартино.
Проведенные эксперименты показали, что за счет полиплексов антиоксидантная активность бета-каротина увеличилась. В случае с бета-каротином в свободной форме за 20 минут в растворе уничтожалось 50% свободных радикалов, а в случае с полиплексами — более 90%. Кроме того, in vitro тесты — на модельной клеточной линии — показали, что полиплексы не влияют на жизнеспособность клеток даже после 72-часового контакта, что подтверждает их низкую токсичность.
По словам автора статьи, основное преимущество разработанных полиплексов заключается в том, что ученые могут настраивать, где, когда и как долго должен длиться процесс высвобождения вещества из сферы. Это можно сделать за счет добавления новых полимеров в состав полиплекса.
Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.
Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.