Опубликовано 29 марта 2018, 21:02

Создан мягкий материал-хамелеон с программируемыми свойствами

Создан мягкий материал-хамелеон с программируемыми свойствами

© beulah jetson/Flickr

Российские ученые приняли участие в разработке материала, который по мягкости приближается к человеческой коже, а по умению менять цвет напоминает кожу хамелеона. Он представляет собой полимер, состоящий из нескольких типов звеньев-мономеров, и может пригодится для создания биологического импланта. Об этом сообщает статья в Science. Исследования поддержаны грантом Российского научного фонда (РНФ).

Материалы для биологических имплантов не должны отличаться по своим механическим свойствам — упругости, жесткости, устойчивости к деформации – от обычной биологической ткани. В противном случае на границе между ними будут возникать серьезные механические напряжения, которые могут повредить окружающие ткани. Чтобы этого не случилось, синтетическое вещество должно деформироваться точно так же, как и ткани рядом с ним. При этом ткани тела очень разнообразны по своим механическим характеристикам.

«Если вы разделывали курочку на ужин, то видели, что жировая ткань очень мягкая, ее механические свойства – упругость, жесткость материала – очень слабые, механическое напряжение – всего пара сотен паскалей. С другой стороны, есть кожа, ее легко растянуть, разгладить или сжать – она очень мягкая. Но, если попытаться сжать или растянуть еще сильнее, ничего не получится, то есть модуль эластичности может возрастать на несколько порядков», – поясняет соавтор статьи Дмитрий Иванов, руководитель лаборатории инженерного материаловедения факультета фундаментальной физико-химической инженерии МГУ имени М.В. Ломоносова.

Для живой ткани мягкость в исходном состоянии и значительное упрочнение при деформации – обычные свойства, но сымитировать их в синтетических материалах до сих пор не удавалось. Часто между мягкостью и эластичностью приходится выбирать. Так, различные виды резины и силикона могут быть достаточно эластичными, но не такими мягкими, как нужно.

«Вы в детстве играли с динозавриками, которых кидаешь в воду, а они растут или вылупляются из яиц? – приводит пример Дмитрий Иванов. – Это был полимер, который называется гидрогель. Он состоит из звеньев-мономеров, и у него есть гидрофильные фрагменты, которые любят воду. Когда вода будет проникать в этот полимер, гидрофильные фрагменты будут поглощать воду, и он будет набухать».

Гидрогель может набрать до 99% воды, становясь мягким, как живая ткань. Но у него есть несколько важных минусов. Ему не хватает механической прочности, он очень легко разрушается – как желе, которое разваливается на куски, если сжать его в руках или попробовать растянуть. Кроме того, он очень зависит от наличия влаги и растворителей, может высохнуть или слишком сильно набухнуть, а материалы для имплантов должны быть стабильны: не менять свой размер, не пропитываться физиологическими жидкостями. До сих пор не получалось создать синтетический материал, который будет обладать мягкостью живых тканей, но при деформации становиться в десятки и даже тысячи раз более жестким.

Ученые изобрели такой материал, сделав его стабильным, мягким и прочным. Его свойствами, включая цвет, можно управлять через его структуру. Как и меняющаяся окраска хамелеона, цвет нового материала – структурный. Это значит, что он обусловлен не химическим эффектом (пигментным красителем), а физическим – дифракцией (отклонением световых волн с возникновением цвета). У хамелеона эти эффекты возникают из-за нанокристаллов гуанина в клетках кожи. Когда ящерица взволнована или возбуждена, изменяется расстояние между кристаллами, и интерференция дает разные оттенки цвета в видимой области. Как и хамелеон, новый материал может менять свой цвет благодаря физическим эффектам. Сам по себе он имеет синеватый оттенок, но механическое воздействие влияет на его супрамолекулярную структуру, и цвет тоже изменяется.

Цвет нового материала

Цвет нового материала

© Дмитрий Иванов

Новый материал не состоит из смеси разных молекул, не нуждается в добавках и растворителях. В структуре всего одной молекулы можно запрограммировать и механические свойства, и цвет материала. Он представляет из себя длинную цепочку – полимер, состоящий из нескольких типов звеньев-мономеров.

Эти мономеры сгруппированы в блоки. В центре находится блок, напоминающий ершик для чистки бутылок: в нем есть стержень, от которого отходит очень много жестких, но гибких щетинок. Щетинки должны быть очень частыми, тогда связи между ними будут удерживать их торчащими, не давая «прилипать» к стержню. В англоязычной литературе такие структуры так и называются – bottlebrush, то есть «бутылочные щетки». Концевые (или, по-научному, терминальные) блоки – это простые цепочки, не похожие на щетки. Блоки из середины и на концах «не любят» друг друга и расслаиваются на две фазы: концевые блоки скручиваются в шарики диаметром 20-40 нанометров, между которыми и располагаются «ершики». Регулируя жесткость и длину «ершиков» и размер таких шариков, можно программировать механические свойства материала и его цвет.

Схематическое изображение цепей сополимера и их самосборка в супрамолекулярную структуру

Схематическое изображение цепей сополимера и их самосборка в супрамолекулярную структуру

© Дмитрий Иванов

Благодаря такому строению материал может полностью имитировать механические свойства свиной кожи и приближаться к человеческой. При этом, поскольку в нем нет растворителей, он не впитывает физиологические жидкости и не высыхает на воздухе. Пока рано говорить о том, можно ли будет создавать мягкие ткани и кожу конкретно из этого материала, но технология управления механическими свойствами через структуру полимерных цепочек может пригодиться для этой цели.

Примеры подбора материалов для воспроизведения деформационных кривых кожи свиньи.

Примеры подбора материалов для воспроизведения деформационных кривых кожи свиньи.

© Дмитрий Иванов

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.