Опубликовано 13 мая 2019, 14:51

Впервые получено квазидвумерное золото

Впервые получено квазидвумерное золото

© Pixabay/Indicator.Ru

Исследователи из Центра фотоники и двумерных материалов МФТИ на примере золота продемонстрировали, как можно получить квазидвумерные материалы из не относящихся к классу двумерных. Квазидвумерное золото может быть осаждено на любую поверхность, если в качестве интерфейса использовать однослойный дисульфид молибдена. Статья об этом опубликована в журнале Advanced Material Interfaces.

В своей работе ученые отмечают превосходную электропроводность ультратонких пленок золота толщиной всего лишь в единицы нанометров и предлагают использовать их для гибкой и прозрачной электроники. Двумерные металлы приближают нас и к появлению нового класса оптических метаматериалов, уникальный потенциал которых в управлении светом поможет создать самые неожиданные технологии, например сделать реальностью мантию-невидимку Гарри Поттера.

В настоящее время известно уже более сотни двумерных материалов, обладающих интересными свойствами, благодаря которым им находят применение в самых разных сферах от биомедицины до электроники и аэрокосмоса. Все известные двумерные материалы принадлежат к классу слоистых кристаллов, для которых характерна слабая связь между слоями и сильная — внутри слоя. Отделить такой слой не трудно, например, графен от графита отделили с помощью скотча.

Металлическую пленку отслаиванием с помощью скотча не получить, но ее можно осадить с помощью термического испарения объемного металла в высоком вакууме. Испаряемый металл осаждается на подложку, атомы металла собираются на поверхности в наночастицы, эти частицы при дальнейшем осаждении металла растут, между ними появляются соединения, получается пленка с пустотами, которые в дальнейшем заполняются. Достаточно однородные пленки высокопроводящих металлов удается получать на толщинах около 20 нанометров, но их нельзя считать прозрачными. Пленки меньшей толщины из-за наличия неоднородностей и пустот характеризуются малой проводимостью, то есть теряются металлические свойства. Это можно объяснить на примере металлической сетки, которая хуже проводит электрический ток по сравнению со сплошным металлическим листом. Перед учеными стоит задача добиться высокой проводимости металлических пленок на толщинах менее 10 нанометров.

Исследователи из Московского физико-технического института начали свою работу с гипотезы о том, что двумерные металлы можно получить на поверхности других двумерных материалов. Первым делом попробовали графен, но оказалось, что он почти не смачивается металлом и при определенных условиях приводит к нехарактерному для металлов росту — практически в виде столбов. При таком механизме наночастицы растут вверх, а пустоты между ними заполняются металлом с большим трудом.

Металлические пленки на графене интересны для ряда приложений, например для поверхностно усиленной рамановской спектроскопии, но они не проводят электрический ток на малых толщинах. В дальнейших исследованиях рассматривалась кинетика роста металлов на двумерных дихалькогенидах переходных металлов и, в частности, на двумерном дисульфиде молибдена. Известно, что золото очень плохо взаимодействует практически со всеми веществами, но с соединениями серы оно может образовывать прочные химические связи.

Так, на кремниевую подложку со слоем диоксида кремния SiO2 и монослоем дисульфида молибдена MoS2 с помощью термического испарения в высоком вакууме осаждались тонкие слои золота. По изображениям электронной и атомно-силовой микроскопии ученые сравнили структуру золотых пленок разной толщины, выращенных на чистой поверхности SiO2 и поверхности SiO2 с монослоем MoS2. Наличие одного слоя двумерного материала позволило получить сплошные пленки золота с характерной для металлов электрической проводимостью на толщинах всего 3–4 нанометра.

Добавление всего одного слоя дисульфида молибдена позволило получить рекордно тонкие и гладкие металлические пленки. Ученые подчеркивают универсальность метода: на любую поверхность независимо от ее свойств можно нанести монослой дисульфида молибдена и получить ультратонкую и ультрагладкую пленку металла. Предполагается, что такие квазидвумерные слои металлов будут интегрированы в многослойные «бутерброды» из различных двумерных материалов, которые имеют название вандерваальсовых гетероструктур. Комбинируя разные монослои, можно получать новые материалы с неожиданными свойствами.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.