Опубликовано 02 сентября 2018, 11:27

Наносенсоры замаскировали от внешнего излучения

Наносенсоры замаскировали от внешнего излучения

© Pixabay

Ученые разработали модель нового метаматериала, который позволит повысить точность работы наносенсоров в оптике и биомедицине за счет маскировки их от внешнего излучения. Статья о результатах исследования опубликована в журнале Scientific Reports.

«Скрыть большой объект на самом деле проще, чем маленький, – рассказывает главный автор статьи Анар Оспанова, аспирантка МИСиС. – Существуют различные техники камуфляжа и стелс-технологий. Но когда мы имеем дело с наноразмерными объектами – например, иглами-сенсорами в биомедицине или физике, ситуация усложняется. Обычно наносенсоры соизмеримы исследуемым объектам, поэтому, попадая в среду, очень сильно на нее влияют – изменяют давление в ней, рассеивают излучение, и становится трудно понять, где характеристики иглы, а где – самого объекта. Мы решили "спрятать" излучение от наносенсоров и таким образом повысить точность их работы».

Основной элемент нового метаматериала – молекула, состоящая из четырех цилиндров-диэлектриков из танталата лития – LiTaO3 – радиусом 5 мкм. Образуя своего рода оболочку для наносенсора, диэлектрики взаимодействуют с излучением, и возникает так называемое состояние анаполя – неизлучающего рассеивателя. В результате объект становится невидимым для внешнего наблюдателя. По отдельности все элементы – наносенсор и диэлектрики – рассеивают излучение и сильно искажают картину электрического и магнитного полей.

Визуализация метамолекулы, состоящей из наносенсора – металлического цилиндра-проводника (в центре) и четырех цилиндров-диэлектриков (по краям), где P – электрический дипольный момент проводника, T – тороидный момент диэлектрической оболочки.

Визуализация метамолекулы, состоящей из наносенсора – металлического цилиндра-проводника (в центре) и четырех цилиндров-диэлектриков (по краям), где P – электрический дипольный момент проводника, T – тороидный момент диэлектрической оболочки.

© Anar Ospanova et al.

Для расчетов был использован металлический проводник радиусом 2,5 мкм, который имитирует наносенсор и обладает очень высоким волновым рассеиванием. Это позволило провести расчеты для максимально возможного уровня излучения. Моделирование проходило в терагерцовом диапазоне, между инфракрасным и сверхвысокочастотным диапазонами.

Визуализация видимого излучения элементов вне метамолекулы и в форме метамолекулы, где (а) – центральный элемент без оболочки; (b) – элементы оболочки без центрального элемента; (с) – центральный элемент в оболочке.

Визуализация видимого излучения элементов вне метамолекулы и в форме метамолекулы, где (а) – центральный элемент без оболочки; (b) – элементы оболочки без центрального элемента; (с) – центральный элемент в оболочке.

© Anar Ospanova et al.

В качестве материала метамолекулы, в зависимости от сферы применения, можно применять и другие материалы. В нанооптике, например, можно будет работать с кремнием и германием. Ученые уверяют, что у созданного метаматериала есть перспективы применения в биомедицине, например, за счет использования в качестве оболочки совместимого с человеческим организмом хлорида калия.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.