Опубликовано 12 декабря 2016, 15:30

Как вырастить кость: наука на службе у травматологов

Российский ученый работает над материалом для костных имплантатов
Как вырастить кость: наука на службе у травматологов

© olafpictures/Pixabay

Как с помощью электричества нарастить кость, чем материал для имплантатов похож на современную водонепроницаемую одежду и что такое полиморфизм, рассказывает Indicator.Ru.

Ведущий научный сотрудник центра RASA Томского политехнического университета Дмитрий Горин в составе международной группы ученых работает над одной из задач тканевой инженерии — задачей регенерации костной ткани. Разработано новое покрытие из минерала фатерита (ватерита) для нановолокнистого материала, использующегося в качестве каркаса для роста клеток костной ткани. Подробнее с исследованием можно ознакомиться в научной статье, опубликованной в журнале Journal of Biomedical Materials Research Part A.

На матрицу, состоящую из волокон поликапролактона, было нанесено новое покрытие, свойства которого ученые и хотели исследовать.

Они получили нетканый материал поликапролактон (poly-ε-caprolactone — PCL) методом электроформования. Эта технология была создана в СССР в 30-х годах прошлого века, но долгое время была засекречена. Потом ее открыли вновь, уже в США. В регенеративной медицине нетканые материалы, полученные методом электроформования, могут быть успешно использованы как каркасы тканеинженерных материалов из-за их уникальных физико-химических свойств, благодаря их наноструктурной природе.

«Опубликованная нами работа открывает новые возможности для создания каркасов для роста костной ткани, и в этом плане она является действительно новой и оригинальной. Особенность работы заключается в том, что мы взяли хорошо известную матрицу из поликапролактона и вырастили на поверхности ее нановолокон покрытие из одной из полиморфных модификаций карбоната кальция (CaCO3), фатерита, — очень интересного материала с точки зрения доставки лекарств, так как он имеет пористую структуру. Кроме того, в организме фатерит при определенных условиях может перекристаллизовываться в компоненты костной ткани. Поэтому композит фатерит/поликапролактон является перспективным материалом для создания костных имплантов», — комментирует соавтор исследования, доктор химических наук Дмитрий Горин, ведущий научный сотрудник Лаборатории новых лекарственных форм центра RASA Томского политехнического университета, а также профессор Саратовского государственного университета.

В природе фатерит — очень редкий минерал ввиду того, что его структура неустойчива в условиях поверхности Земли. У фатерита есть два гораздо более распространенных аналога с той же химической формулой (CaCO3): арагонит и наиболее широко встречающийся кальцит. Подобные явления — существование вещества с одной химической формулой, но с разными типами кристаллической структуры — носят в минералогии название «полиморфизм».

Изображение композитного материала фатерит/поликапролактон, полученное методом сканирующей электронной микроскопии

Изображение композитного материала фатерит/поликапролактон, полученное методом сканирующей электронной микроскопии

© Дмитрий Горин

Изображение композитного материала фатерит/поликапролактон, полученное методом сканирующей электронной микроскопии

Изображение композитного материала фатерит/поликапролактон, полученное методом сканирующей электронной микроскопии

© Дмитрий Горин

Чтобы клетки начали расти, им нужно предоставить основу. Она может быть различной, нужно подобрать именно ту, свойства которой обеспечивают быстрый рост клеток, а следовательно, быструю регенерацию тканей. К этому материалу предъявляются определенные требования по проницаемости среды для различных веществ, а также паропроницаемости. После трансплантации каркас запускает процесс роста клеток, а затем деградирует. По словам Дмитрия Горина, если речь идет о создании будущей костной ткани, то в этом случае деградация композитного каркаса будет идти достаточно медленно, около месяца и более, чего вполне достаточно для замещения имплантата новообразованной костной тканью.

Основой является наноструктурированная матрица из поликапролактона, на поверхность волокон которых нанесены поликристаллические агрегаты фатерита (CaCO3), который при перекристаллизации в организме превращается в гидроксиапатит (Ca5(PO4)3(OH)) — минерал, из которого состоит скелет человека. Такое превращение возможно благодаря взаимодействию имплантата с кровью и другими биологическими жидкостями. Если рассмотреть кровь с точки зрения ионного состава, она содержит фосфат-ион (PO4)3- (в фосфатной буферной системе). Именно этот фосфат-ион взаимодействует с фатеритными частицами покрытия, в результате чего происходит реакция перекристаллизации с образованием гидроксиапатита. Механизм процесса перекристаллизации фатерита в гидроксиапатит был подробно рассмотрен учеными в их предыдущей работе.

«Костные импланты актуальны, когда речь идет о дефекте в кости, который сам не может возместиться. Сейчас мы ведем работу по созданию костных имплантов вместе с коллегами из Саратовского научно-исследовательского института травматологии и ортопедии», — говорит Дмитрий Горин.

Волокна из поликапролактона получают, как было упомянуто выше, методом электроформования. Принцип метода заключается в том, что раствор полимера под давлением подается в иглу и за счет разности потенциалов, приложенной между иглой и вторым электродом, формируется нить с субмикронным диаметром. Нить свободно падает на подложку, являющуюся вторым электродом, и формирует нетканый материал.

Полученные нити можно сделать ориентированными, но для описанных в статье задач они должны были быть расположены хаотично, неупорядоченно. Современные мембранные материалы, использующиеся в изготовлении одежды, являются проницаемыми для пара, но не пропускают воду и делаются по той же технологии.

В дальнейшем ученые предполагают изучить поведение нового материала импланта in vivo (в живом организме) для того, чтобы выяснить возможность применения данного материала для регенерации костной ткани.