Опубликовано 12 ноября 2016, 18:26

Математические головоломки профессора Стюарта

Отрывок из научно-популярной книги английского математика Иэна Стюарта
Математические головоломки профессора Стюарта

© Free Stock Photos

Гексакосиойгексеконтагексафобия

Этим страшным словом обозначается боязнь числа 666. В 1989 году президент США Рональд Рейган и его жена Нэнси при переезде поменяли прежний адрес своего нового дома, 666 по Сен-Клу-роуд, на 668 по той же улице. Однако вряд ли этот случай можно приводить в качестве примера гексакосиойгексеконтагексафобии, поскольку вполне возможно, что Рейганы не боялись этого числа как такового, а просто хотели подстраховаться и избежать в будущем очевидных обвинений и возможных неловкостей.

С другой стороны… Когда Дональд Риган, шеф президентской администрации при Рейгане, опубликовал в 1988 году свои мемуары «Под запись. От Уолл-стрит до Вашингтона», он написал, что Нэнси Рейган регулярно советовалась с астрологами, сначала с Джейн Диксон, а позже с Джоан Куигли. «Практически любое серьезное действие или решение Рейганов во время моего пребывания на посту главы администрации Белого дома заранее согласовывалось с какой-то женщиной в Сан-Франциско, которая рисовала гороскопы, чтобы убедиться в благоприятном расположении планет». Число 666 обладает оккультным смыслом, потому что именно оно объявлено числом зверя в Откровении Иоанна Богослова (13:17-18): «И что никому нельзя будет ни покупать, ни продавать, кроме того, кто имеет это начертание, или имя зверя, или число имени его. Здесь мудрость. Кто имеет ум, тот сочти число зверя, ибо это число человеческое; число его шестьсот шестьдесят шесть». Считается, что это число отсылает нас к нумерологической системе, которая на иврите называется «гематрия», а по-гречески — «изопсефия» и в которой числа обозначаются буквами алфавита. При этом возможно несколько вариантов обозначения: буквы алфавита можно пронумеровать последовательно, а можно сначала обозначить цифры 1–9, затем десятки 10–90, затем сотни 100–900 и т.д., сколько нужно (именно так записывали числа древние греки). Тогда сумма чисел, обозначаемых буквами имени человека, и будет численным значением этого имени. За прошедшие века предпринимались бесчисленные попытки вычислить, кто такой зверь, упоминаемый в Откровении. Среди предположений фигурируют и Антихрист (написанный в подобных обвинениях на латыни как Antichristum), и Римско-католическая церковь (обозначенная одним из вариантов титулования римского папы — Vicarius Filii Dei), и Эллен Гулд Уайт (Ellen Gould White), одна из организаторов Церкви адвентистов седьмого дня. С чего бы вдруг? Ну, если считать только римские цифры в ее имени, то получится:

Расшифровка нумерологии

Расшифровка нумерологии

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

что в сумме дает 666. Если вы считаете, что зверем был Адольф Гитлер, вы можете «доказать» это, начав нумерацию с

A = 100

H = 107

I = 108

T = 119

L = 111

E = 104

R = 117

666

В сущности, процесс «доказывания» сводится к следующему: выбираете ненавистную фигуру на основании собственных политических или религиозных взглядов, а затем подгоняете нумерацию и, если необходимо, имя, чтобы получить нужный результат. Однако не исключено, что все эти глубокомысленные рассуждения и далеко идущие выводы основаны на простом недопонимании, не говоря уже о сомнительности веры в то, что подобные вещи в принципе могут что-то значить. Сегодня уже очевидно, что число 666, возможно, возникло в результате ошибки. Около 200 года н.э. священник Ириней знал, что в нескольких ранних рукописях называется другое число, но приписывал это ошибкам писцов и утверждал, что именно 666 можно найти «во всех самых достоверных и древних списках». Но в 2005 году ученые Оксфордского университета применили компьютерные технологии обработки изображений и попытались прочесть с их помощью нечитаемые прежде части самого раннего известного списка «Откровения» — экспоната №115 из числа папирусов, обнаруженных при раскопках древнего Оксиринха. Этот документ, датируемый примерно 300 годом н.э., считается самой достоверной и определяющей версией канонического текста. Числом зверя в нем названо 616.

Оптимальная пирамида

Стоит подумать о Древнем Египте, и в голову сразу же приходят пирамиды, в первую очередь Великая пирамида Хеопса в Гизе, самая большая из всех, и стоящая рядом с ней пирамида Хефрена, чуть поменьше, и относительно небольшая пирамида Микерина. Известны остатки более чем 36 крупных и сотен более мелких египетских пирамид — от громадных и почти полностью сохранившихся до простых отверстий в земле, содержащих лишь несколько обломков камня от погребальной камеры, а иногда и того меньше. О форме, размерах и ориентации пирамид написаны огромные тома. Большая часть их содержимого умозрительна; на основе различных численных соотношений выстраиваются весьма амбициозные цепочки рассуждений. Особенно любят исследователи Великую пирамиду: с чем только ее ни связывали — и с золотым сечением, и с числом π, и даже со скоростью света. К подобным рассуждениям возникает столько вопросов, что трудно воспринимать их серьезно: в любом случае данные, на которых они основаны, часто неточны; к тому же с таким количеством измерений и параметров всегда можно подобрать нужную комбинацию.

Слева: пирамиды Гизы. С заднего плана к зрителю: Великая пирамида Хеопса, пирамиды Хефрена, Микерина и три пирамиды цариц. Из-за перспективы те, что позади, кажутся меньше, чем на самом деле. Справа: Ломаная пирамида

Слева: пирамиды Гизы. С заднего плана к зрителю: Великая пирамида Хеопса, пирамиды Хефрена, Микерина и три пирамиды цариц. Из-за перспективы те, что позади, кажутся меньше, чем на самом деле. Справа: Ломаная пирамида

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

Один из лучших источников по пирамидам — книга The Complete Pyramids Марка Ленера. Помимо прочего, в ней можно найти данные о наклоне граней пирамид: углы между плоскостями, проходящими через треугольные грани, и квадратным основанием пирамиды. Вот несколько примеров:

Углы наклона пирамид

Углы наклона пирамид

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

Более обширные данные вы можете найти на сайте Википедия. На ум приходят два наблюдения. Первое состоит в том, что приводить некоторые из этих углов с точностью до угловой секунды (а остальные до минуты) неразумно. Сторона основания Черной пирамиды Аменемхета III в Дашуре составляет 105 м, а высота — 75 м. Изменение угла наклона грани пирамиды на одну угловую секунду соответствует изменению высоты пирамиды на один миллиметр. Правда, следы ребер основания сохранились, как и некоторые фрагменты камней облицовки, но, учитывая общую степень сохранности пирамиды, вам трудно было бы оценить первоначальный наклон ее граней в пределах хотя бы 5° от истинной величины.

Все, что осталось от Черной пирамиды Аменемхета III

Все, что осталось от Черной пирамиды Аменемхета III

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

Второе, на что невольно обращаешь внимание, — это тот факт, что, хотя наклон граней пирамид немного варьируется (иногда даже в пределах одной пирамиды, как, к примеру, у Ломаной), у всех этих древних сооружений он близок к 54°. Почему? В 1979 г. Р. Макмиллан начал с того надежно установленного факта, что строители пирамид использовали для отделки своих сооружений с внешней стороны дорогостоящий облицовочный камень, к примеру белый турский известняк или гранит. Внутри они использовали более дешевые материалы: низкокачественный мокаттамский известняк, саманный кирпич и щебенку. Поэтому для них имело смысл всячески снижать количество каменной облицовки. Какой формы должна быть пирамида, если фараон желает, чтобы при заданной стоимости облицовочного камня монумент получился как можно больше? То есть какой угол наклона граней пирамиды к основанию позволяет получить максимальный объем при фиксированной суммарной площади четырех треугольных граней?

Слева: разрез пирамиды. Справа: максимизация площади равнобедренного треугольника или, что эквивалентно, ромба с заданной длиной стороны

Слева: разрез пирамиды. Справа: максимизация площади равнобедренного треугольника или, что эквивалентно, ромба с заданной длиной стороны

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

Вообще-то это прекрасное упражнение из области дифференциального исчисления, но эту задачу можно решить и проще, геометрически, если применить хитрый прием. Разрежем пирамиду пополам вертикальной плоскостью, проходящей через диагональ основания (серый треугольник). Получаем равнобедренный треугольник. Объем получившейся полупирамиды пропорционален площади этого треугольника, а площади наклонных граней полупирамиды пропорциональны длинам его соответствующих сторон. Поэтому задача эквивалентна поиску равнобедренного треугольника максимальной площади при фиксированной длине двух равных его сторон.

Зеркально отобразив треугольник относительно основания, получим, что наша задача эквивалентна поиску ромба максимальной площади при заданной длине стороны. Решением является квадрат, ориентированный диагональю по вертикали. Следовательно, углы при вершине каждой треугольной секции такого рода составляют 90°, а углы при основании — 45°. Базовая тригонометрия подсказывает, что угол наклона грани пирамиды при этом равен

Математические головоломки профессора Стюарта

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

что близко к средней величине наклона грани у настоящих пирамид.

Задача 14 из Московского математического папируса: нахождение объема усеченной пирамиды

Задача 14 из Московского математического папируса: нахождение объема усеченной пирамиды

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

Макмиллан ничего не утверждает в отношении того, что говорят приведенные им расчеты о строительстве пирамид; его основная мысль заключается в том, что эта задача — показательный пример практического владения геометрией. Однако в Московском математическом папирусе приводится правило нахождения объема усеченной пирамиды (то есть пирамиды со срезанной верхушкой) и задача, из которой явствует, что египтяне понимали подобие. В нем объясняется также, как найти высоту пирамиды по ее основанию и наклону. Более того, и в этом папирусе, и в математическом папирусе Ринда объясняется, как найти площадь треугольника. Так что древнеегипетские математики вполне могли решить задачу Макмиллана. Поскольку папируса, в котором содержался бы именно этот расчет, в нашем распоряжении нет, то нет и убедительных причин полагать, что эта задача действительно была решена в Древнем Египте. У нас нет никаких свидетельств того, что египтяне были заинтересованы в оптимизации формы своих пирамид. И даже если были, они вполне могли определить оптимальную форму экспериментально, при помощи глиняных моделей. Или просто произвести эмпирическую оценку. А может быть, форма постепенно эволюционировала в направлении наименьшей стоимости: строители и фараоны, они такие. В альтернативном варианте угол наклона грани мог определяться инженерными соображениями: считается, скажем, что необычная форма Ломаной пирамиды объясняется тем, что на середине строительства она начала разваливаться и строителям пришлось уменьшить крутизну граней. Тем не менее можно с уверенностью заявить, что этот небольшой математический пример имеет более непосредственное отношение к пирамидам, чем, скажем, скорость света.

Волна перемещения

Математические исследования верхом? Почему бы нет? Вдохновение может осенить где угодно. Выбирать не приходится.

Джон Скотт Рассел

Джон Скотт Рассел

© Стюарт И. Математические головоломки профессора Стюарта. — М.: Альпина нон-фикшн, 2017.

В 1834 году шотландский инженер-кораблестроитель Джон Скотт Рассел, ехавший на лошади вдоль канала, обратил внимание на поразительное явление: «Я наблюдал за движением лодки, которую стремительно тянула по узкому каналу пара лошадей, как вдруг лодка остановилась — лодка, но не та масса воды в канале, которую она увлекала и приводила в движение; эта вода собралась вокруг носа судна в состоянии неистового возбуждения, затем внезапно оторвалась от него и покатилась вперед с огромной скоростью, принимая форму большого одиночного возвышения, округлой, гладкой и четко очерченной водяной массы, которая продолжила движение вдоль канала без всякого видимого изменения формы или снижения скорости. Я последовал за ней верхом и догнал; она катилась дальше со скоростью примерно 13 или 15 км/ч, сохраняя первоначальную форму, размером около 9 м в длину и 30–45 см в высоту. Ее высота постепенно снижалась, и после преследования на протяжении 1,5–3 км я потерял ее среди извивов канала. Вот такой в августе 1834 года была моя первая случайная встреча с этим исключительным и красивым явлением, которое я назвал волной перемещения».

Рассела заинтриговало это явление, поскольку обычно одиночные волны расходятся в стороны по мере движения или рассыпаются, как прибой на пляже. Он соорудил дома волновой бассейн и провел серию экспериментов. В ходе испытаний выяснилось, что такая волна очень устойчива и может пройти большое расстояние, не меняя формы. Волны разных размеров движутся с разными скоростями. Если одна такая волна догоняет другую, она выходит вперед после сложного взаимодействия. А большая волна на мелководье разделяется на две — среднюю и маленькую.

Эти открытия поставили физиков того времени в тупик, потому что совершенно не поддавались объяснению с позиции тогдашних взглядов на поведение жидкостей. Более того, видный астроном Джордж Эйри и ведущий специалист по динамике жидкостей Джордж Стокс долго не верили, что такая волна существует. Сегодня мы знаем, что Рассел был прав. В некоторых обстоятельствах нелинейные эффекты, неизвестные математикам того времени, компенсируют тенденцию всякой волны к расхождению, потому что скорость движения волны зависит от частоты колебаний. В этих эффектах первыми разобрались лорд Рэлей и Жозеф Буссинеск примерно в 1870 году.

В 1895 году Дидерик Кортевег и Густав де Врис предложили уравнение Кортевега — де Вриса, в которое вошли подобные эффекты, и показали, что у него есть обособленные (солитарные) волновые решения. Аналогичные результаты были получены для других уравнений математической физики, и феномен получил новое название: солитон. Серия крупных открытий позволила Питеру Лаксу сформулировать очень общие условия, при которых уравнения имеют обособленные решения, и объяснить эффект туннелирования. Математически этот процесс сильно отличается от того, как взаимодействуют мелководные волны, например на пруду, когда их формы складываются; все это — прямое следствие математической формы волнового уравнения. Солитоноподобные явления наблюдаются во многих областях науки — от ДНК до волоконной оптики. Именно этим объясняется существование широкого спектра явлений со странными названиями вроде «бризер», «кинк» и «осциллон».

Есть также весьма соблазнительная идея, которую пока никому не удалось заставить работать. Элементарные частицы в квантовой механике соединяют в себе каким-то образом две разные, несовместимые на первый взгляд характеристики. Как и большинство объектов квантового уровня, они представляют собой волны, но при этом умеют соединяться в частицеподобные блоки. Физики давно пытаются отыскать уравнения, которые согласовывались бы со структурой квантовой механики, но допускали существование солитонов. Лучшее, чего им на сегодняшний день удалось достичь, — это уравнение, описывающее инстантон, который можно интерпретировать как частицу с очень коротким временем жизни, которая возникает из ниоткуда и немедленно после этого исчезает.