Опубликовано 30 апреля 2019, 16:29

Проводящие клетки сердечной ткани оказались способны к самоорганизации

Белым контуром выделен проводящий путь из кардиомиоцитов в монослое сердечной ткани (31% кардиомиоцитов и 69% непроводящих клеток). Кардиомиоциты помечены розовым цветом, ядра – синим.

Белым контуром выделен проводящий путь из кардиомиоцитов в монослое сердечной ткани (31% кардиомиоцитов и 69% непроводящих клеток). Кардиомиоциты помечены розовым цветом, ядра – синим.

© Nina Kudryashova et. al./PLOS Computational Biology

Биофизики из МФТИ и Гентского университета (Бельгия) выяснили, что сердечная ткань, несмотря на высокое содержание невозбудимых клеток (до 75%), все-таки может проводить возбуждение. Это происходит благодаря взаимодействию возбудимых сердечных клеток — кардиомиоцитов — и образованию ими разветвленной проводящей сети. Работа опубликована в журнале PLOS Computational Biology.

Как уже упоминалось выше, генераторами и проводниками электрических волн в сердце служат возбудимые клетки — кардиомиоциты. Кроме кардиомиоцитов, в сердце есть клетки соединительной ткани, которые не передают возбуждение. К ним относятся, например, фибробласты. В сердце здорового человека фибробласты поддерживают его структурную целостность и участвуют в устранении повреждений. При инфаркте и некоторых других сердечных заболеваниях и патологиях кардиомиоциты умирают — их место занимают фибробласты. Этот процесс можно сравнить с образованием шрамов при повреждении кожных покровов. Чрезмерное содержание фибробластов в сердечной ткани мешает распространению электрических сигналов. Такое нарушение называется сердечным фиброзом, и именно оно является частой причиной аритмии.

Критическая плотность непроводящих клеток, выше которой сердечная ткань не должна проводить возбуждение, называется порогом перколяции. Его вычисляют с помощью теории перколяции, математического метода описания возникновения связных структур, в качестве которых в данной задаче выступают случайно распределенные проводящие и непроводящие клетки сердечной ткани. Согласно расчетам, сердечная ткань должна терять проводимость для электрических волн, если фибробластов в ней станет больше 40%. Парадокс в том, что, по данным экспериментов, образцы ткани с содержанием фибробластов, много превышающим порог перколяции (65–75%), все еще проводят электрические сигналы. Это означает, что должен существовать механизм, ответственный за проводниковую самоорганизацию кардиомиоцитов.

Чтобы разрешить этот парадокс, ученые совместили эксперименты in vitro — в искусственно смоделированной среде — на монослое сердечных клеток новорожденных крыс с экспериментами in silico — в полностью смоделированной на компьютере биологической системе — на морфологической и электрофизиологической компьютерной модели сердечной ткани.

Кардиомиоциты сердца представляют собой синцитий — функциональное объединение большого числа тесно взаимосвязанных клеток. За счет такого объединения возбуждение только одной клетки приводит к распространению по всем клеткам сердечного синцития. Группой исследователей была выдвинута никогда не рассматриваемая ранее гипотеза: в фиброзной ткани кардиомиоциты выравнивают свои цитоскелеты для образования единого синцития вместе с остальной сердечной тканью.

«Мы фиксировали распространение электрической волны в 25 монослойных образцах сердечной ткани с разным процентным содержанием кардиомиоцитов и фибробластов. Так из экспериментов in vitro нам удалось рассчитать порог перколяции — оказалось, что он составляет 75% фибробластов. Это число сильно отличается от предсказанных с помощью теории перколяции или других классических математических моделей 40%. Далее мы заметили, что кардиомиоциты в образцах располагаются не случайным образом, а собираются в разветвленную проводящую сеть. Учет этого факта помог воспроизвести полученные in vitro результаты с прогнозами in silico в компьютерной модели», — поясняет профессор Константин Агладзе, руководитель лаборатории биофизики возбудимых систем МФТИ.

Благодаря такому предположению в рамках компьютерной модели удалось успешно воспроизвести не только морфологию проводящих путей, но и наблюдаемые в экспериментах in vitro спад скорости и высокий порог перколяции.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.