Опубликовано 06 апреля 2018, 20:51

Объяснена необычная упругость графена

Объяснена необычная упругость графена

© Science Photo Library/Getty Images

Международный коллектив с российскими учеными в своем составе объяснили необычные характеристики эластичности и упругости графена. Исследование опубликовано в Physical Review B, препринт статьи доступен на arXiv.Org.

Графен представляет собой однослойный лист из шестигранных ячеек, образованных атомами углерода. Необычные упругие свойства этого материала, открытого Андреем Геймом и Константином Новоселовым в 2004 году, сделали его перспективной заменой кремния в электронике нового поколения.

Если растягивать привычные нам материалы, такие как, например, резина, вдоль, то они сжимаются поперек. Некоторые материалы при растяжении становятся только толще, потому что их структуры от этого расправляются и разворачиваются. Способность к сжатию или расширению в поперечном размере при растяжении характеризуется при помощи так называемого коэффициента Пуассона, а необычные материалы с отрицательным коэффициентом Пуассона называют ауксетиками. Это название происходит от греческого слова αὐξητικός (auxetikos), означающего «то, что имеет склонность увеличиваться». К ауксетикам относятся, например, некоторые горные породы (в частности, пирит); живые костные ткани, бумага, полимер Gore-Tex.

Изделия из любых материалов, сложенные по правилам миура-ори – системы складывания, позволяющей раскрыть конструкцию в одно движение, также обладают свойствами ауксетика

Изделия из любых материалов, сложенные по правилам миура-ори – системы складывания, позволяющей раскрыть конструкцию в одно движение, также обладают свойствами ауксетика

© ИТФ РАН

Поскольку ауксетики не расширяются при нагревании, они не будут создавать механические напряжения и помехи в работе электроники. Физики работают над тем, чтобы соединить обычный материал с ауксетиком, чтобы он не расширялся в приборах. Также ауксетики очень чувствительны к звуковым волнам, и из них можно создать звуковые сенсоры, способные улавливать очень быструю смену колебаний.

Поэтому вопрос, относится ли графен к ауксетикам, интересовал физиков уже много лет, но экспериментально узнать коэффициент Пуассона у него не удавалось. Графен выращивается на подложках и с трудом отсоединяется от них, поэтому измерить коэффициент мешают либо характеристики подложки, либо слишком маленький размер оторвавшегося от них образца, из-за чего к нему негде прикрепить кронштейны для измеримого растяжения. При этом данные теоретических расчетов этого параметра противоречили друг другу.

Подошва кроссовок, составленная из заходящих друг на друг треугольников, при давлении ведет себя как ауксетик

Подошва кроссовок, составленная из заходящих друг на друг треугольников, при давлении ведет себя как ауксетик

© ИТФ

Российско-немецко-голландская группа ученых смогла разрешить это противоречие, найдя ему объяснение в самой структуре материала, порождающей сложное взаимодействие волн при растяжении. Обычно графен представляют как плоский двумерный лист атомов углерода, но на самом деле по его поверхности бегут изгибные волны – складки, которые стремятся перевести его в «скомканное» состояние. Такие волны возникают у всех образцов графена больше 40-70 ангстрем (так называемая длина Гинзбурга).

«Долгое время теория мембран предсказывала, что из-за этого явления двумерные кристаллы наподобие графена в принципе не могут существовать: они будут все время стремиться сжаться в комок, – поясняет соавтор работы Валентин Качоровский, ведущий научный сотрудник Физико-технического института имени А. Ф. Иоффе и Института теоретической физики имени Л.Д. Ландау. – Как мы видим, это предположение было ошибкой, так как по поверхности графена, помимо изгибных, бегут также обычные волны сжатия-растяжения. Нелинейное взаимодействие двух типов волн не позволяет мембране сжаться в комок».

Когда сила растяжения мала, изгибные волны противостоят ей, и коэффициент Пуассона меняет знак, делая графен ауксетиком. Вся приложенная сила (например, при нагревании) тратится на расправление «складок» этих волн, где запасена дополнительная энергия. При большой силе растяжения изгибные волны графена подавляются, и свойства вещества остаются «классическими».

Работа выполнена в рамках совместного проекта РНФ-DFG (Немецкого научно-исследовательского сообщества) учеными из Института теоретической физики имени Л.Д. Ландау, Физико-технического института имени А.Ф. Иоффе, Института Технологии в Карлсруэ (Германия) и Университета Неймегина (Нидерланды).

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.