Опубликовано 03 мая 2018, 14:42

Описано поведение вакуумного масла в космосе

Описано поведение вакуумного масла в космосе

© NASA Johnson/YouTube

Российские ученые описали поведение свободной жидкой пленки в открытом космосе. Результаты исследования сотрудников МГУ имени М.В. Ломоносова и МАИ опубликованы в журнале Physics of Fluids.

Устойчивость пленки жидкости в обычных условиях зависит в основном от того, как она взаимодействует с окружающим ее воздухом. Наиболее существенный эффект, так называемая неустойчивость Кельвина-Гельмгольца, возникает из-за трения жидкости о воздух – разность скоростей двух сред приводит к тому, что на поверхности жидкости развивается рябь, возникают волны, с поверхности срываются капли и т.д. Наиболее известный пример такого процесса – это ветровые волны на поверхности водоемов. Авторы нового исследования теоретически изучили, как будет вести себя свободная пленка жидкости в вакууме, когда она не взаимодействует с окружающей средой. Исследование проведено на примере так называемого вакуумного масла — жидкости, у которой вязкость, теплопроводность и поверхностное натяжение существенно зависят от температуры (такие жидкости используются, например, в паромасляных насосах).

Исследовать, как жидкости ведут себя в условиях открытого космоса, необходимо и на практике — например, для развития новых технологий охлаждения космических аппаратов. В перспективе на космических аппаратах длительного действия смогут применять так называемые капельные радиаторы-охладители. В таких устройствах жидкость системы охлаждения пропускается через специальные форсунки и превращается в пелену жидких капель, движущуюся в открытом космосе. За счет большой поверхности мелких капель, с которой тепло «сбрасывается» за счет излучения, удается достичь высокой эффективности охлаждения жидкости. В то же время возникает серьезная проблема – как эти капли собрать, превратить снова в жидкость, а эту жидкость возвратить на борт космического аппарата. Возникла идея собирать остывшие капли на специально организованное течение жидкой пленки. Проблеме устойчивости течения такой пленки в открытом космосе и посвящена настоящая работа.

«Обычно жидкие струи и пленки очень быстро разбиваются на капли из-за неустойчивости Кельвина-Гельмгольца, связанной с трением о воздух. В космосе эта неустойчивость исчезает, поэтому необходимо исследовать другие возможные механизмы неустойчивости и причины фрагментации жидкости. Мы выяснили, какие еще неустойчивости могут проявиться в жидкой пленке в условиях, когда нет окружающего воздуха, но течение существенно неизотермическое из-за излучения тепла с поверхности пленки», — рассказал профессор Александр Осипцов, один из авторов работы, заведующий лабораторий механики многофазных сред НИИ механики МГУ.

С помощью классических подходов теории гидродинамической устойчивости исследователи описали математически поведение пленки вакуумного масла в открытом космосе. Оказалось, что в отсутствие главного механизма неустойчивости (Кельвина-Гельмгольца) начинают проявляться неустойчивости, связанные с возникающими в пленке градиентами вязкости и поверхностного натяжения. С поверхности пленки излучается тепло, из-за этого возникает неоднородность температуры как вдоль поверхности пленки, так и внутри нее. Эта неоднородность, в свою очередь, приводит к неоднородности вязкости и поверхностного натяжения, что и является причиной появления новых механизмов неустойчивости.

Схематичное изображение потока

Схематичное изображение потока

© Александр Осипцов

Исследователи математически описали возникновение неустойчивостей в потоке жидкости, изучили, каким образом коротковолновые и длинноволновые возмущения развиваются со временем, определили наиболее «опасные» типы возмущений. В дальнейшей работе ученые планируют продолжить развитие теоретической модели и описать более сложные процессы, которые могут возникать в системе.

«Мы пока исследовали самый начальный этап – малые возмущения; нашли условия, при которых они растут или не растут, определили критерии неустойчивости. В дальнейшем нужно решать более сложные задачи: как развиваются возмущения на нелинейной стадии, за какое время в пленке возникают неоднородности толщины и «дырки», как быстро пленка может распадаться на капли, а главное – необходимо научиться управлять процессом и стабилизировать устойчивый режим течения», — добавил Александр Осипцов.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.