Ученые заставили прозрачные материалы поглощать свет
Коллектив физиков из России, Швеции и США теоретически показал крайне необычный оптический эффект: ученым удалось «виртуально» поглотить свет с помощью материала, который не обладает поглощением. Теоретическая находка авторов открывает новые пути к созданию элементов памяти для света. Работа опубликована в журнале Optica.
Поглощение электромагнитного излучения, в том числе света, — это один из основных электромагнитных эффектов. Он связан с превращением электромагнитной энергии внутри непрозрачного материала в тепло или другие виды энергии (например, при возбуждении электронов). Уголь или черная краска выглядят черными потому, что в этих материалах энергия падающего света практически полностью поглощается. Другие же материалы, такие как стекло или кварц, не поглощают свет и потому выглядят прозрачными.
В своей теоретической работе ученым удалось нарушить это простое интуитивное представление о поглощающих материалах и заставить структуру из абсолютно прозрачного материала выглядеть идеально поглощающей. Чтобы обойти запрет на поглощение, ученые воспользовались особыми математическими свойствами матрицы рассеяния — функции, которая связывает падающее на систему и рассеянное ей электромагнитное поле. При падении на систему из прозрачного материала пучка света с постоянной во времени интенсивностью система рассеивает весь падающий свет вследствие отсутствия поглощения. Это свойство матрицы рассеяния называется унитарностью. Оказалось, однако, что если особым образом менять во времени интенсивность падающего пучка, то унитарность может быть нарушена, по крайней мере на какое-то время. В частности, если увеличивать интенсивность падающего света по экспоненте, вся энергия падающего света будет копиться внутри прозрачного материала и не покидать его. Снаружи при этом такая система будет выглядеть идеально поглощающей.
Чтобы продемонстрировать описанный эффект, авторы рассмотрели тонкий слой прозрачного диэлектрика и рассчитали необходимый для виртуального поглощения профиль интенсивности падающего света. Численные расчеты подтвердили, что при экспоненциальном нарастании интенсивности падающей волны прохождение и отражение от такого слоя полностью отсутствуют. Иными словами, слой выглядит идеально поглощающим, несмотря на отсутствие фактического поглощения. Однако, когда экспоненциальное нарастание амплитуды падающей волны прекращается, вся «запертая» внутри слоя энергия начинает покидать его.
Результаты, продемонстрированные в этой работе, не только расширяют общие представления о том, каким образом может вести себя свет при взаимодействии с обыкновенными прозрачными материалами, но и открывают дорогу к интересным практическим приложениям. Например, такое накопление света в прозрачной системе может позволить разработать устройства оптической памяти, которые будут без потерь хранить оптическую информацию и высвобождать ее в нужный момент времени.
Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.