Математика и Computer Science3 мин.

Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний

Экономисты определили, что использование алгоритмов машинного обучения вместо традиционных математических моделей позволяет на 10% точнее прогнозировать рентабельность — упрощенно говоря, прибыльность — фирм. При этом самыми важными факторами, от которых в наибольшей степени зависит будущее компании, оказались ее рентабельность за предыдущий год, наличие роста продаж и объем веб-трафика. Полученные данные помогут владельцам фирм, инвесторам и государству лучше оценивать и прогнозировать экономическое состояние российских компаний. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Mathematics.

Рентабельность торговых компаний зависит от многих факторов: их размера, стратегии управления, умения выстраивать хорошие взаимоотношения с клиентами, а также глобальных кризисов. Чтобы спрогнозировать будущее фирмы — например определить, сколько прибыли она принесет владельцам в следующем году, — экономисты обычно используют регрессионные модели. Этот подход позволяет математически рассчитать, насколько интересующий фактор (в данном случае — прибыль) зависит от нескольких других, например, от тех, что перечислены выше.

Однако регрессионные модели не всегда корректно отражают взаимную зависимость различных экономических показателей из-за того, что связи между ними могут быть довольно сложными. В данном случае могут помочь методы машинного обучения, которые, опираясь на большие массивы данных, находят скрытые на первый взгляд зависимости и предлагают более точное решение. Но результаты их сравнения оказываются неоднозначными: одни авторы утверждают, что более точные результаты выдает все-таки регрессионный анализ, другие — что компьютерный алгоритм.

Ученые из Национального исследовательского Томского политехнического университета (Томск) с коллегой из Санкт-Петербургского государственного университета (Санкт-Петербург) и Географического института имени Йована Цвийича (Сербия) на практике сравнили точность методов машинного обучения и регрессионного подхода для прогнозирования рентабельности фирм. Авторы использовали данные о 551 торговой компании за 2017–2020 годы. Среди показателей, которые интересовали ученых как потенциально влияющие на рентабельность, были размер и возраст фирмы, рентабельность за предыдущий год, наличие роста продаж, веб-трафик и другие.

Авторы использовали пять различных компьютерных алгоритмов: три простых, включающих разные типы нейронных сетей, и два сложных. Последние — так называемые портфели и ансамбли — сочетали в себе несколько простых алгоритмов, способных учитывать и исправлять ошибки друг друга. Программы обучались на наборах данных за 2017–2019 годы, тогда как информация за 2020 год использовалась непосредственно для их тестирования.

Затем математическими методами исследователи рассчитали ошибки прогнозов, полученных с помощью регрессионного анализа и компьютерных алгоритмов. Оказалось, что алгоритмы, называемые портфелями и ансамблями, давали наиболее точные прогнозы. При этом самых достоверных оценок удавалось достичь, опираясь на такие показатели фирм как рентабельность за предыдущий год, динамика роста продаж и веб-трафик. При применении сложных методов машинного обучения (портфели и ансамбли методов) в среднем медиана абсолютной ошибки прогноза составила около 3%.

Это объясняется тем, что данные факторы в значительной степени влияют на состояние компании в будущем. Так, например ученые определили, что максимальной прибыли фирмы достигают, если у них постоянно возрастает количество продаж, и при этом они развивают цифровые каналы торговли, например, через веб-сайт. Если соблюдается лишь одно из условий, доход компании падает. Худшая ситуация наблюдается при падении продаж и одновременно высокой посещаемости сайта фирмы.

«Наше исследование показало, что применение сложных методов машинного обучения (портфели и ансамбли методов) при прогнозировании рентабельности фирм позволяет повысить точность прогноза и снизить абсолютную ошибку прогноза на 10% по сравнению с традиционной моделью регрессии. При этом наиболее достоверные результаты они выдают, совместно оценивая показатели продаж, рентабельности предыдущего года и веб-трафика. Наше исследование будет полезно как для владельцев фирм, так для инвесторов и государственных чиновников, поскольку позволит лучше оценивать перспективы развития экономики страны», — рассказывает руководитель проекта, поддержанного грантом РНФ, Любовь Спицына, кандидат экономических наук, доцент отделения социально-гуманитарных наук Томского политехнического университета.

Автор:Indicator.Ru