Найден способ использовать аномальную теплопередачу
Ученые впервые создали достаточно большие для практического применения тела, теплопередача между которыми в десятки раз превышает ту, которую предсказывает стандартная теория. Поток энергии между кварцевыми пластинами миллиметрового размера в новом эксперименте превысил теоретические ожидания в 45 раз. Результаты изложены в журнале Physical Review Letters.
В физике и астрофизике часто используется модель абсолютно черного тела — абстрактного объекта, который поглощает все падающее излучение и сам испускает свет по определенному закону, зависящему только от температуры. Наиболее близкие к абсолютно черному телу реальные объекты — это звезды, например, Солнце. Однако в микромире, когда расстояния между телами становятся сравнимы с длинами волн излучения, перенос энергии может на порядки превышать то, что предсказывает чернотельное излучение. Во всех существовавших экспериментальных демонстрациях этого явления физики использовали наноразмерные объекты, которым трудно придумать практическое применение.
Читайте также
В новой работе американские физики исследовали поток энергии между кварцевыми пластинами размером 5 на 5 миллиметров, находящихся на расстоянии до 200 нанометров друг от друга. Подобные эксперименты сложно проводить, поскольку при этом необходимо контролировать расстояние между телами в вакууме с точностью до нанометров, их поверхности должны быть строго параллельны, а тепло не должно уходить посредством других эффектов. При этом у самих пластин должна быть большая разность температур. В новой работе ученые смогли преодолеть эти трудности и измерить поток энергии при разделении от 1200 до 200 нанометров и разнице температур до 156 K. На самом близком расстоянии теплоперенос превысил предсказания теории черного тела в 45 раз.
Теоретический анализ указал, что поток энергии увеличивается за счет взаимодействия фононных поляритонов — смешанного возбуждения (квазичастицы), представляющего собой комбинацию электромагнитной волны и колебаний кристаллической решетки. На близких расстояниях поляритоны двух пластин начинают влиять друг на друга, что увеличивает теплообмен. Авторы надеются, что открытие пригодится при создании твердотельных тепловых двигателей и для отвода энергии от наноразмерных устройств.
Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.