Физика

Мощный полупроводниковый лазер превратили в оптический пинцет

© National Cancer Institute/Wikimedia Commons

Российские ученые смогли добиться сверхфокусировки излучения полупроводникового лазера за счет самоинтерференции его луча. Они смогли использовать такой луч как оптический пинцет, чтобы перемещать микроскопические объекты

Российские ученые смогли добиться сверхфокусировки излучения полупроводникового лазера за счет самоинтерференции его луча. Они смогли использовать такой луч как оптический пинцет, чтобы перемещать микроскопические объекты. Статья с результатами исследования опубликована в Scientific Reports.

По сравнению с другими типами полупроводниковые лазеры эффективнее, компактнее и дешевле. Однако у них есть и недостатки: луч мощного полупроводникового лазера, например, плохо фокусируется. В результате площадь фокусного «пятна» получается на один-два порядка больше теоретического предела. Из-за этого страдает плотность мощности, что мешает использовать полупроводниковые лазеры для обработки материалов.

В новой работе ученые предложили способ устранить этот недостаток. Для этого нужно создать так называемый пучок Бесселя, в котором мощность излучения остается постоянной по ходу его распространения. Чтобы создать пучок Бесселя, лазерный луч нужно направить в специальную коническую линзу. Такая линза фокусирует лазерное излучение за счет того, что «заставляет» его составляющие («моды») интерферировать сами с собой. Из-за этого поперечный размер лазерного пятна в фокусе приближается к теоретическому пределу, а протяженность фокуса увеличивается.

Чтобы подтвердить, что эту идею можно реализовать, ученые провели эксперимент. Они направляли луч лазера в волновод — оптическое волокно, на выходе из которого располагалась коническая линза. Физики тестировали два ее варианта: с углами при вершине конуса в 140° и 160° и радиусом скругления вершины менее 10 микрометров. Первая линза смогла сфокусировать луч лазера до размеров в 2-4 микрометра в поперечнике при длине распространения волны около 20 микрометров. Этот результат почти на порядок меньше того, чего можно добиться с помощью «идеальной» сферической линзы.

Коническая линза (угол при вершине — 140°) на срезе оптического волокна диаметром 100 мкм, полученная путем 3D-нанопечати, и продольное распределение сверхфокусированного лазерного луча. Поперечный размер луча — 2–4 мкм, расстояние распространения луча — около 20 мкм.

© Grigorii S. Sokolovskii et al.

Вторую линзу ученые использовали в качестве своеобразного оптического пинцета для манипуляций с красными кровяными клетками крысы (средний размер таких клеток — 5-6 мкм). Они смогли захватывать эти клетки и переносить их на значительные расстояния.

«В более ранних работах мы показывали, что можно создать пучок Бесселя, даже используя полупроводниковый лазер с очень плохими спектральными характеристиками и даже светодиод, — поясняет первый автор работы, сотрудник ФТИ имени А.Ф. Иоффе Григорий Соколовский. — В этой работе нам удалось показать, что можно создать пучок Бесселя даже из лазерного луча с очень плохими пространственными характеристиками, а это открывает новые возможности для использования мощных полупроводниковых лазеров».

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.