Опубликовано 15 июня 2019, 12:01

Нейросеть повысила эффективность металлургических печей

Нейросеть повысила эффективность металлургических печей

© Wikimedia Commons

Ученый Национального исследовательского технологического университета «МИСиС» предложил свежую «нейросетевую альтернативу» для управления металлургическими печами, обещающую рост их энергоэффективности в пределах 10%. Статья о разработке опубликована в Procedia Computer Science.

Созданный «нейросетевой настройщик» призван повысить энергоэффективность металлургических нагревательных печей с высокой – до 100 МВт – потребляемой мощностью, сообщил разработчик, доцент кафедры автоматизированных и информационных систем управления Старооскольского технологического института (филиала) НИТУ «МИСиС» Антон Глущенко.

Как правило, печи при работе подвергаются самым разным возмущениям – например, открытие штор для загрузки и выгрузки металла ведет к потерям тепла, а загрязнение газовых горелок – к снижению эффективности сжигания топлива. Из-за этого параметры печей меняются. Но так как управляют ими обычно с помощью линейных регуляторов с постоянными параметрами – пресловутая нестационарность не учитывается. Это снижает качество управления и ведет к энергетическим потерям.

«Для решения традиционных проблем предлагается построение адаптивной системы управления – нейросетевого настройщика. Система в реальном времени подстраивает параметры линейного регулятора так, чтобы качество управления печью во всех режимах оставалось одинаково высоким, снижая тем самым энергопотребление агрегата», – говорит Глущенко.

Автор отмечает, что новизна подхода обусловлена сочетанием в настройщике двух интеллектуальных технологий – нейросетей и баз знаний. Нейросеть вычисляет значения параметров для используемого на печи линейного регулятора и обучается прямо в процессе функционирования, чтобы отслеживать происходящие в печи изменения.

«Главные вопросы при этом – когда и с какой скоростью обучать нейросеть. На них отвечает база знаний, отражающая опыт инженера по автоматизации технологических процессов. Она содержит и описания ситуаций, когда необходимо настраивать регулятор, и формулы для вычисления скорости обучения нейросети. В отличие от других подходов, применение нейросетевого настройщика не требует ни построения модели объекта управления, ни явной эталонной модели. Кроме того, он поможет отслеживать график задания при изменениях параметров печи и компенсировать действующие на нее возмущения», – пояснил ученый.

Настройщик реализован в виде функционального блока, который может быть размещен в оперативной памяти логических контроллеров, широко распространенных в металлургии. Выходы и входы этого блока привязываются к уже размещенному в контроллере линейному регулятору и получаемым извне сигналам.

«Внедрение настройщика не потребует капитальных затрат, поскольку с аппаратной и программной точек зрения в существующей системе управления печью ничего не изменится. Применение данного подхода позволит повысить энергоэффективность работы нагревательных металлургических печей на 5–10%», – заключил Антон Глущенко.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.

_Понравился материал? [Добавьте Indicator.Ru](http://bit.ly/2WrrlNZ) в «Мои источники» Яндекс.Новостей и читайте нас чаще._ _Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru._