Нобелевские лауреаты: Вернер Гейзенберг. Премия за неопределенность
О том, как один нобелевский лауреат чуть было не завалил диссертацию другого, как одна прогулка изменила всю современную физику, и о том, как Вернер Гейзенберг всей своей жизнью иллюстрировал собственный принцип неопределенности, рассказывает наш сегодняшний выпуск рубрики «Как получить Нобелевку».
Нынешний выпуск «нобелевской» рубрики на портале Indicator.Ru – юбилейный. С начала года мы написали ровно 99 биографий нобелевских лауреатов по физике, химии и физиологии или медицины. С 1901 года мы добрались в 1930-е и на уже солидной статистике можно сделать четкий вывод: практически все биографии лауреатов делятся на две категории – про первых написано огромное количество материалов на русском языке и приходится жестоко отбирать известные факты, проверяя их по альтернативным источникам. Мечников, Эйнштейн, Планк… В некоторых других случаях не хватает даже материалов на английском и приходится залезать в немецкие, итальянские, шведские, датские источники.
Наш сотый герой, безусловно, из первой категории. А как может быть иначе, если речь идет, не больше и не меньше, об одном из основателей квантовой механики, одном из самых молодых лауреатов премии по физике, о человеке, который создал свои основные труды всего в 25 лет, и сумел оставить след не только в физике, но и в философии (можете себе представить себе философа из ФРГ, сотрудничавшего с гитлеровской Германией, чьи философские труды издавались в Советском Союзе и поступали в открытую продажу?). Итак, встречайте: Вернер Гейзенберг.
Вернер Карл Гейзенберг
Родился: 5 декабря 1901 года, Вюрцбург, Германская империя
Умер: 1 февраля 1976 года, Мюнхен, ФРГ
Нобелевская премия по физике 1932 года. Формулировка Нобелевского комитета: «За создание квантовой механики, применение которой привело, помимо прочего, к открытию аллотропических форм водорода (for the creation of quantum mechanics, the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen)».
Наш герой родился в самом начале XX веке в городе Вюрцбурге на реке Майна, родине Рентгена и нынешнего главы Международного олимпийского комитета Томаса Баха. Предки со стороны отца были ремесленниками, со стороны матери – крестьянами и фермерами, и тем не менее, дед Вернера по матери был уже директором Максимиллиановской гимназии – лучшего среднего учебного заведения Мюнхена, а отец уже преподавал классическую филологию. Вернер был вторым сыном в семье – старший брат Эрвин, родившийся годом раньше, тоже тянулся к наукам и стал в итоге химиком. Судя по всему, Август Гейзенберг поддерживал конкуренцию братьев, что привело к неплохим результатам. Когда Вернеру исполнилось 9, он переехал с семьей в Мюнхен где начал учиться в гимназии, которой руководил его дед. Во время Первой мировой Эрвин успел повоевать около года, а Вернер только готовился к войне в местной мюнхенской ячейке Wehrkraftverein – Баварской ассоциации оборонительных сил.
Впрочем, война закончилась, империя пала, началась Баварская советская республика, потом она пала, в стране и в умах началось брожение, а Гейзенберг заинтересовался философией и задумался об атомах, одновременно познакомившись с теорией относительности Эйнштейна. Примерно с таким компотом мыслей – Кант, Платон, атомы и Эйнштейн – в 1920 году Вернер Гейзенберг и попал в Мюнхенский университет, где угодил в цепкие руки «делателя нобелевских лауреатов»: Арнольда Зоммерфельда.
Пожалуй, только Джозеф Джон Томсон превосходит Зоммерфельда в количестве учеников-нобелиатов: помимо Гейзенберга, еще шестеро: Вольфганг Паули, Питер Дебай, Ханс Бете, Лайнус Полинг, Исидор Раби и Макс фон Лауэ стали лауреатами Нобелевской премии. Самого же Зоммерфельда номинировали 84 раза (в том числе – и все его ученики), но увы – не судьба!
Арнольд Зоммерфельд сразу приметил гения, которого отказались принять математики на свой семинар – и начал его готовить сразу к защите докторской: по правилам Зоммерфельда, талантливые студенты защищали диссертацию сразу по окончанию обучения.
В июне 1922 года Макс Борн организовал в Геттингене встречу физиков Германии и Нильса Бора, который в том же году получит Нобелевскую премию. Так получился «Боровский фестиваль»: великий датчанин две недели читал лекции по атомной физике и квантовой теории, немецкие физики вышли из-под бойкота, который им устроили победившие страны, а Гейзенберг, которого привез вместе с другими своими учениками туда Зоммерфельд получил важный толчок для своего развития. В одной из лекций Бор представил работу своего коллеги и фактического заместителя в Институте теоретической физики в Копенгагене, Хендрика Антони Крамерса, нидерландца по происхождению, об эффекте Штарка (о нем мы писали в статье об этом нобелевском лауреате).
Гейзенберг был знаком с этой статьей и обратился с критикой работы к Бору. Аудитория, естественно, мягко скажем… ну, применим слово «удивилась»: студент-недоучка критикует зама САМОГО БОРА! Но «сам Бор» не нашел ничего неуместного в замечаниях студента недоучки – они действительно нашли слабые места в работе. Бор предложил Гейзенбергу прогуляться и продолжить дискуссию.
Как вспоминал потом Гейзенберг, «разговор почти сразу же перешел к его любимым темам: философским вопросам об атомах, использованию привычных понятий для их описания, а также к тому, что означает «понимание» физических явлений».
Много позже физик написал в своей книге «Беседы вокруг атомной физики»: «Эта прогулка оказала огромное влияние на мою последующую научную карьеру. Возможно, было бы точнее указать, что мое развитие как ученого началось с этой прогулки».
В Геттингене же решилась и дальнейшая судьба Гейзенберга: дело в том, что на 1922-1923 учебный год Зоммерфельд уплывал в США, где ему предложили позицию приглашенного профессора. Поэтому очень уместно было оказаться рядом с Максом Борном – ему можно было «сдать» на семестр своих студентов для продолжения обучения и экспериментальной работы.
В октябре 1922 года Гейзенберг прибыл к Борну. Тот описывал нового студента, как «простого крестьянина с короткими белыми волосами, ясными блестящими глазами и очаровательным выражением лица». Тем не менее, мощный талант «крестьянина» был ясен, и в январе нового, 1923 года Борн уже писал Зоммерфельду: «Я очень горжусь Гейзенбергом. Все мы высоко ценим его. У него невероятный талант». И предложил, чтобы юноша после защиты докторской приехал к нему работать.
И дело не только в том, что по вечерам Борн и Гейзенберг играли на пианино в четыре руки – они оба были еще и талантливыми музыкантами, а в том, что уже тогда нащупывались берега новой физики. В общем, уже к лету и Борн, и еще один гениальный студент Борна, Вольфганг Паули, и сам Нильс Бор понимали – все квантовые модели описания простейших атомов сложнее водорода не работают. Нужна новая физика – квантовая механика.
Правда, участие Гейзенберга в ее создании чуть было не погубила докторская. В диссертации Зоммерфельд, который делал «халтурку» для мюнхенского водопровода, поручил ученику несколько задач из гидродинамики, с которыми его студент блестяще справился. Однако, кроме защиты самой работы, требовалось еще сдать теоретический и практический экзамен по физике. И вот тут Вернер не смог ответить ни на один вопрос нобелевского лауреата Вильгельма Вина. Он даже не смог объяснить принцип действия аккумулятора. Высший бал по теорфизике и математике – и «двойка» по экспериментальной физике… Такого экзаменаторы не помнили! Лишь вмешательство Зоммерфельда заставило комиссию поставить Гейзенбергу суммарную положительную оценку. Следующую ночь юноша провел в поезде в Геттинген и в раздумьях – не выгонит ли его Борн после такого разноса. Впрочем, Макс Борн, расспросив о ходе экзамена, решил не менять планы, и в октябре 1923 года у Борна появился новый помощник и коллега по игре в четыре руки на пианино.
Удивительное дело: за два года в статусе помощника Борна, Гейзенбергом были заложены основы квантовой механики. Более того, если Гейзенберг, однажды осененный на острове Гельголанд в Северном море, куда он сбежал от сенной лихорадки, изложил свои уравнения в матричной форме, то чуть позже Эрвин Шредингер изложил то же самое в формате волновых уравнений. Началось веселое время в физике – споров, приятий и неприятий, обсуждений и понимания, что Гейзенберг и Шредингер пишут об одном и том же. К 1927 году это стало понятно почти всем, однако из математического описания Гейзенберга стало понятно еще одно – при перемножении матриц важен порядок множителей. Несколько логических ходов – и мы получаем принцип неопределенности Гейзенберга: невозможно бесконечно точно одновременно узнать импульс частицы и ее координаты. Надежный старый мир стал расплываться.
Поразительно: вчерашний студент перевернул (не один, конечно), самые основы мироздания. Естественно, дальше последовал длинный путь математического оформления, следствий, практического применения квантовой механики – иногда через многие десятилетия. Так, основанный на принципе неопределенности Гейзенберга мысленный эксперимент (или парадокс) Эйнштейна-Подольского-Розена в этом году привел к квантово-шифрованному чату между Пекином и Парижем через спутник.
Была Нобелевская премия, принятие (или не принятие) нацистского режима, работа над ядерным оружием Третьего Рейха (или его саботаж), таинственная встреча в Копенгагене с Нильсом Бором в 1941 году, философские работы послевоенного времени… о Гейзенберге можно писать и говорить много. Но, видимо, в полном согласии с квантовым духом нашего героя, будет всегда оставаться что-то неопределенное.
Подписывайтесь на Indicator.Ru в соцсетях: Facebook, ВКонтакте, Twitter, Telegram, Одноклассники.