Нейронные сети научились предсказывать динамику роста растений
Ученые из Сколтеха обучили нейронные сети оценивать и предсказывать динамику роста растений с учетом основных действующих на растение факторов и предлагать оптимальное соотношение требующихся питательных веществ и других параметров, определяющих рост растения. Результаты исследования опубликованы в журнале IEEE Transactions on Instrumentations and Measurements.
Искусственный интеллект за последние несколько лет попробовали применить практически во всех сферах нашей жизни, и часто он оказывается полезным, помогая человеку принимать правильные решения для реализации поставленных задач. Применение интеллектуальных систем в области выращивания растений в искусственных условиях не является исключением. Среди множества различных типов архитектур нейросетей особое место занимают так называемые рекуррентные нейронные сети. Такая архитектура позволяет эффективно обрабатывать данные, представляющие собой направленную последовательность, например текст, речь и временны́е ряды. Именно временны́ми рядами хорошо описывается динамика роста растения во времени.
В своей исследовательской работе ученые из Сколтеха показали, как рекуррентные нейронные сети совместно с алгоритмами компьютерного зрения могут полностью взять на себя задачу предсказания динамики роста растений в зависимости от текущего состояния системы выращивания и параметров, характеризующих ее. Задача была решена с использованием данных, полученных в совместном с Германским аэрокосмическим центром (DLR) исследовании. Ученые из Германии работали над задачей дополнительной стимуляции роста растений в искусственных системах, схожих с теми, что применяются на Международной космической станции. В совместном эксперименте были получены ценные данные, позволяющие найти оптимальное соотношение питательных веществ, необходимых растению для наилучшего роста при имеющихся ограничениях.
В работе были использованы алгоритмы компьютерного зрения для сегментации и определения площади поверхности листвы, а для предсказания роста растений — различные архитектуры рекуррентных нейронных сетей, показавшие свою эффективность при решении данной задачи. Для демонстрации и апробации разработанной программы в реальных условиях была предложена встраиваемая энергоэффективная система, позволяющая производить вычисления и предсказание динамики роста. Система была разработана на базе популярного одноплатного компьютера для прототипирования Raspberry Pi с внешней графической платой Intel Movidius. В основе устройства — компактный и мощный графический процессор Myriad 2, который при мощности всего лишь в 1 Вт способен выдавать вычислительную производительность в 150 Гигафлопс, что сравнимо с производительностью суперкомпьютеров середины 1990-х годов. Графические чипы такого рода отлично подходят для запуска нейронных сетей, и в будущем они станут основой встраиваемых систем с искусственным интеллектом. «Данное исследование позволит создавать портативные системы для постоянного мониторинга, анализа состояния растений в искусственных системах выращивания и предсказания динамики их роста, что в конечном счете окажет неоценимую помощь человеку», — рассказывают участники исследования Дмитрий Шадрин и Александр Меньщиков.
Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.
Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.