Звездная математика
Кто такие белые карлики, как они сталкиваются и что порождают, как смоделировать сверхновую звезду и при чем тут вода, разобрался Indicator.Ru
Вычислить путь звезды, развести сады, предотвратить тайфун – компьютерное моделирование сегодня может если не все, то очень многое, и изображает природные процессы почти такими же сложными, какие они есть на самом деле. О самых разных информационных технологиях и их применениях ученые рассказали на конференции Института системного программирования им. В.П. Иванникова РАН, приуроченной к 70-летию российских информационных технологий. В этом тексте мы расскажем об одном из представленных исследований, авторы которого смоделировали рождение сверхновой звезды.
Работу на стыке двух дисциплин выполнил большой коллектив авторов из Института вычислительной математики и математической геофизики СО РАН, который базируется в Новосибирске. Вдохновил математиков на решение этой проблемы доктор математических наук Александр Тутуков, главный научный сотрудник Отдела физики и эволюции звезд Института астрономии РАН.
Белый карлик и 13 миллиардов лет одиночества
Сверхновые типа Ia появляются при внезапной детонации в паре из двух звезд, причем одна из них обязательно должна быть белым карликом. Звезды этого типа по массе не уступают Солнцу, но по объему сравнимы с Землей. Все сверхновые типа I не состоят из атомов тяжелее водорода.
Белый карлик появляется из звезды массой от 0,7 до 10 солнечных. Миллиарды лет старения расходуют все запасы топлива, что вгоняет его в краску. Постепенно желтея, потом краснея, белый карлик под конец своих дней охлаждается настолько, что превращается в черный. Правда, за все время жизни нашей Вселенной еще ни один белый карлик не постарел до такого состояния, однако время у них предостаточно: период «жизни» таких объектов сопоставим с периодом жизни протона (1026 лет).
Но не все белые карлики доживают до настолько глубокой старости: часто они оканчивают свои дни гораздо раньше (и интереснее). И здесь у них все не как у людей: если у нас наличие пары жизнь обычно продлевает, то в роду белых карликов дольше живут одиночки. Слишком сильное сближение с компаньоном опасно для такой звезды: в результате могут погибнуть они оба. И если не с музыкой, то с фейерверком – сверхновой.
Такую яркую смерть астрономы когда-то считали рождением (выражение «рождение сверхновой» и сейчас еще в ходу), ведь в этот момент они замечали ранее невидимую звезду. Но сказать точно, что представляет собой этот процесс – смерть или рождение – сложно. Ведь после такой феерической гибели химические элементы тяжелее азота разлетаются во все стороны со скоростью более 10 тысяч км/с и когда-нибудь дадут жизнь новым звездам и планетам, и, может быть, войдут в состав живых организмов.
Искра, буря, математика
Сверхновую типа Ia можно узнать по горению углерода в ядре. Чтобы поджечь его нужна очень высокая температура, которая чаще всего достигается только при слиянии белого карлика и его компаньона. Но термоядерное горение может запуститься и в самом белом карлике. Тут уже возможно несколько вариантов: внешнее воздействие, появление более плотной области или развитие турбулентности в белом карлике. Однако до сих пор точно не понятно, какое из этих явлений вносит наибольший вклад.
При слиянии звезда-компаньон падает на «главную» звезду, центр которой ближе к центру масс – точке, вокруг которой вращается вся система. Тогда происходит нецентральный взрыв, моделированием которого и решили заняться российские ученые. Как ни странно, эти расчеты производятся при помощи уравнений гидродинамики жидкости.
«Если мы рассмотрим среднюю плотсноть галактики, то в одном кубическом сантиметре будет одна частица. В 99% случаев это будет водород. Но если рассмотреть масштабы, там уже начинают действовать законы обычной эйлеровой гидродинамики, поэтому мы используем их в качестве основной модели. По Вселенной газ распределен понемножку, но размеры ее очень большие, поэтому именно гидродинамическая модель является общепринятой», – поясняет Игорь Куликов, доктор физико-математических наук (кстати, промелькнувший в нашем рейтинге молодых ученых 2016 года) и сотрудник Института вычислительной математики и математической геофизики.
Уравнение Эйлера – гениального и очень плодовитого в научном плане математика и механика, опубликовавшего более 850 работ по самым разным наукам, – было опубликовано в 1757 году. Им описывается поведение идеальной жидкости – той, у которой нет вязкости и теплопроводности (или они так малы, что можно ими пренебречь).
«Жидкие» звезды и кубик Рубика
Что ж, если Шнобелевскую премию дают за жидких котов, кто мешает представить сверхновую идеальной жидкостью? Тем более, что частные случаи уравнения Эйлера применяются к газам, а внутри самой звезды при взрыве образуются турбулентные потоки неравномерного горения, из-за чего результатом взрыва сверхновой становятся не только самые «негорючие» элементы (например, никель и железо), но и сера, кремний и другие тяжелые элементы, обогащающие межзвездную среду.
Кстати, уравнения гидродинамики используются для сверхновых разных типов. Математические подходы к их моделированию очень похожи. Важные различия – присутствие или отсутствие линии водорода в спектре звезды и сам механизм взрыва (термоядерный синтез или коллапс ядра). В некоторых случаях нужна релятивистская поправка для скорости движения звезды и ее плотности.
Итак, у нас есть начальные данные, из которых нужно вывести, как со временем меняется скорость, плотность и другие параметры сверхновой. Но аналитически ученые не могут найти решения уравнений для такой большой области. Поэтому приходится решать уравнения численным путем.
«Есть разные подходы к численному решению. Мы делаем дискретизацию области: разбиваем ее на ячейки, как кубик Рубика, – прокомментировал Игорь Куликов. – В каждом кубике решаем уравнение в зависимости от его соседей. Главное, чтоб их размеры были как можно меньше».
При этом гидродинамика сверхновой разномасштабна. Это значит, что в разных областях минимальная точность расчетов различается. Поэтому ячейки для расчетов делаются разного размера. В областях горения углерода (в зависимости от типа сверхновой, под горением может подразумеваться коллапс или термоядерная реакция) и фронта ударной волны нужна самая точная детализация, поэтому там ячейки делаются более мелкие, а в остальных областях возможны упрощения. Подобные расчеты осуществляются на компьютерах с большой оперативной памятью – порядка 720 гигабайт.
Читайте также
Per aspera ad astra
Еще одна проблема при моделировании сверхновых – запаздывание начала процессов горения углерода.
«Если мы говорим о классическом подсеточном процессе, то мы знаем изменение концентрации звездного вещества по времени и можем посчитать начало процесса. Но если начать результаты сравнивать с наблюдением, то ничего подобного не наблюдается», – пояснил Игорь Куликов. Ему и его коллегам удалось решить эту проблему в своих расчетах: они определили, что некоторые интегральные характеристики в отдельных ячейках означают, что запускать процесс внутри них надо с запозданием.
Все эти вычисления дают нам скорость изменения концентрации натрия – результата ядерного горения углерода – относительно изменения концентрации самого углерода. Ученым удалось смоделировать этот процесс и даже получить на выходе «рисунок» в виде полумесяца, который характерен для сверхновых такого типа. Он возникает из-за детонации углерода на периферии области достижения критических значений.
В дальнейшем астрофизики планируют смоделировать и сверхновые других типов (IIa, Iс). Также при расчетах сейчас не рассматривается первая секунда ядерного коллапса, но в течение года ученые собираются решить эту проблему. Главным выводом исследователей стало то, что «стандартные» сверхновые типа Iа совсем не такие стандартные, как хотелось бы, и у науки еще осталось к ним немало вопросов.
Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.
Подписывайтесь на Indicator.Ru в соцсетях: Facebook, ВКонтакте, Twitter, Telegram, Одноклассники.