«Ветвящееся время» расскажет о работе генов десятков тысяч клеток одновременно
Ученые Нижегородского государственного университета имени Лобачевского нашли средство, позволяющее определить состояние и активность генов и другие важные данные одновременно для десятков тысяч клеток. Новая технология извлечения ветвящегося времени дает важнейшую информацию о развитии индивидуального организма и зарождении в нем различных болезней, таких как рак. Исследование опубликовано в журнале Nature Communications.
Одним из крупнейших достижений науки последних лет является технология получения информации о тысячах индивидуальных клеток, извлеченных из организма. Это так называемые «омики» отдельных клеток (геномика, эпигеномика, транскриптомика, протеомика), которые дают нам геномы тысяч индивидуальных клеток, состояния и активности различных генов в них, а также наличие различных протеинов в этих клетках. Данные о каждой клетке удобно представить в виде точки в очень многомерном пространстве. В результате новой технологии ученые всего мира получают тысячи точек (клеток) в пространстве огромной размерности.
Исследование, базирующееся на таких методах анализа данных, как топологический и геометрический анализ, «топологические грамматики», «метод главных графов», «аппроксимация данных» и др., является важным элементом новой (и огромной по вложениям и количеству игроков) технологии получения данных о живых организмах. И это новая технология («омики» отдельных клеток). Эти данные открывают колоссальные и еще не полностью осознанные возможности для развития биологии и персонализированной медицины.
Идея ветвящегося времени развития позволяет преобразовать получаемые огромные объемы данных к более понятному, читаемому и интерпретируемому виду. Представляется, что каждая клетка лежит на некоторой траектории развития. Эти траектории могут ветвиться там, где клетка в своем развитии делает выбор одного варианта будущего из нескольких возможных. Геометрически эти траектории развития с точками бифуркации на них представляют собой «ветвящееся время» развития.
Читайте также
Новая технология извлечения этого ветвящегося времени из данных была разработана большой международной командой исследователей, включающей 15 ученых из шести стран: США, Китая, Франции, Италии, Великобритании и России.
Сложные деревья строятся с использованием грамматик элементарных преобразований. На каждом шаге базового алгоритма выбирается именно то элементарное преобразование, которое дает наибольший выигрыш в качестве аппроксимации данных.
Метод топологических грамматик для обработки сложных данных общей природы был предложен еще в 2007 году профессором Александром Горбанем (Великобритания, в настоящее время руководит выполнением мегагранта в ННГУ им. Лобачевского, Нижний Новгород) и его учеником Андреем Зиновьевым (Франция, в настоящее время сотрудничает с Университетом Лобачевского в выполнении мегагранта).
«Понятие ветвящегося времени (или, как часто говорят, псевдовремени) возникает в биологии таким образом: клетки и события, с ними происходящие, размещаются вдоль некоторого графа (или, более формально, одномерного континуума, так как граф — дискретный объект). Этот ветвящийся континуум играет в анализе событий развития и дифференцировки ту же роль, что и линейное время в других областях (шкала для размещения событий). Никакой мистики или модификации физического времени. Ну, вот ввели люди такое понятие и многие им пользуются. Удобно. А топология этой шкалы извлекается из анализа данных. Потом данные картируются на этой шкале», – объясняет Александр Горбань.
Этот метод изучался в рамках широкого международного сотрудничества и был использован для создания специализированного программного продукта STREAM, строящего ветвящееся время клеточного развития из данных «омик» индивидуальных клеток.
«Представьте себе, еще сравнительно недавно мы с восторгом и ощущением чуда узнали о расшифровке генома человека. А новая технология позволяет определить состояния и активности генов и другие важные данные одновременно для десятков тысяч клеток, взятых из организма. Для каждой из них – индивидуально, а не какие-то там средние значения. Это дает важнейшую информацию о развитии индивидуального организма и зарождении в нем различных болезней, например рака. Но данные эти надо прочитать, расшифровать и извлечь из них полезную информацию. Мы предоставляем такое средство для работы с этими данными и извлечения из них важной информации», – анализирует Александр Горбань.
Программное обеспечение STREAM, его вычислительное ядро ElPiGraph и другие относящиеся к проекту программы свободно доступны онлайн. Проект частично поддержан Министерством науки и высшего образования РФ, проект № 14.Y26.31.0022.
Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.
Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.