Физика

В Сколтехе смешали свет и материю в «волшебную пыль»

© Mark Pilar/Flickr

Ученые использовали квантовые квазичастицы, известные как поляритоны, для поиска простейшего решения сложных проблем. Такая «волшебная пыль», комбинирующая в себе свет и материю, может стать основой нового типа компьютера, который имеет потенциал превзойти возможности даже самых мощных современных суперкомпьютеров. В исследовании приняли участие сотрудники Сколковского института науки и технологий, а также нескольких университетов Великобритании

Ученые использовали квантовые квазичастицы, известные как поляритоны, для поиска простейшего решения сложных проблем. Такая «волшебная пыль», комбинирующая в себе свет и материю, может стать основой нового типа компьютера, который потенциально сможет превзойти возможности даже самых мощных современных суперкомпьютеров. В исследовании приняли участие сотрудники Сколковского института науки и технологий, а также нескольких университетов Великобритании. Результаты исследования опубликованы в журнале Nature Materials.

Поиск оптимального решения аналогичен поиску самой низкой точки в горной местности, где очень непостоянный ландшафт, со множеством впадин и расщелин. Путешественник может спуститься вниз и думать, что он достиг ландшафтного минимума, в то время как за соседней горой окажется более глубокая впадина. Такой поиск кажется сложным даже в естественной горной местности, но попробуйте представить сложность такой же задачи в многомерном пространстве. «Это именно та проблема, которая возникает в реальной жизни, когда нужно минимизировать функцию в присутствии множества неизвестных параметров и ограничений», — рассказывает первый автор статьи Наталия Берлова, профессор Сколтеха и факультета прикладной математики и теоретической физики Кембриджа.

Современные суперкомпьютеры могут иметь дело только с ограниченным подмножеством таких задач, когда размерность минимизируемой функции мала или когда базовая структура проблемы позволяет быстро найти оптимальное решение даже для функции большой размерности. Даже гипотетический квантовый компьютер, если он будет создан, в лучшем случае даст квадратичное ускорение для неупорядоченного поиска глобального минимума по сравнению с классическим компьютером.

Наталья Берлова и ее коллеги посмотрели на проблему по другим углом. По задумке ученых «волшебная пыль» состоит из поляритонов — квантовой суперпозиции фотонов и электронов, созданых с помощью лазера на тонких слоях напыления различных атомов, таких как галлий, мышьяк, индий и алюминий. Электроны в этих слоях поглощают и излучают свет определенного цвета. Поляритоны в десять тысяч раз легче электронов и могут достигать достаточной плотности для образования нового состояния вещества, известного как конденсат Бозе — Эйнштейна, где квантовые фазы поляритонов синхронизируются и создают единый макроскопический квантовый объект, который излучает свет.

Следующий вопрос, который встал перед учеными: как создать потенциальный ландшафт, соответствующий минимизируемой функции, и заставить поляритоны конденсироваться в самой низкой точке. Для этого ученые сосредоточились на конкретном типе проблемы оптимизации, но достаточно общем для того, чтобы решить с его помощью любую другую трудную проблему. В качестве модельной проблемы была взята минимизация XY-модели, одной из фундаментальных моделей статистической механики. Авторы показали, что они могут создавать поляритоны в узлах произвольного графа: во время конденсации поляритонов их квантовые фазы располагаются в конфигурации, соответствующей абсолютному минимуму целевой функции.

«Мы только начинаем изучать потенциал поляритонных графов для решения сложных задач», — говорит соавтор исследования Павлос Лагудакис, руководитель лабораторий гибридной фотоники в Сколтехе и Саутгемптонском университете. — «В настоящее время мы масштабируем наше устройство до сотен узлов, проверяя его фундаментальную вычислительную мощность. Наша конечная цель — микрочиповый квантовый вычислитель, работающий в нормальных условиях окружающей среды».

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.