Физика

Ферромагнетизм соединили со сверхпроводимостью

Кристаллы чистого европия

© Wikimedia Commons

Ученые из Франции и России теоретически описали экспериментальное поведение недавно открытого материала, сочетающего в себе свойства сверхпроводника и ферромагнетика. Разработанная теоретическая модель предсказывает и ряд новых эффектов в подобных материалах.

Ученые из Франции и России теоретически описали экспериментальное поведение недавно открытого материала, сочетающего в себе свойства сверхпроводника и ферромагнетика. Разработанная теоретическая модель предсказывает и ряд новых эффектов в подобных материалах. Работа опубликована в журнале Physical Review Letters.

Ферромагнетизм и сверхпроводимость являются в некотором роде антагонистами и, на первый взгляд, не должны сосуществовать в одном кристалле. Действительно, сверхпроводимость — это такое состояние материала, при котором электрический ток течет в нем без сопротивления. При этом если сверхпроводник поместить в магнитное поле, то это поле будет полностью «вытолкнуто» из него (эффект Мейсснера). Ферромагнетики же — материалы, обладающие намагниченностью, которая создает магнитное поле в объеме. Поэтому кажется разумным полагать, что в одном материале не может быть одновременно сверхпроводимости и ферромагнетизма.

Однако недавно сосуществование ферромагнетизма и сверхпроводимости было обнаружено в соединениях на основе европия (Eu). Эти материалы вызвали огромный интерес со стороны исследователей. Ведь, с одной стороны, возможность такого сосуществования важна с фундаментальной точки зрения, а с другой, комбинация ферромагнетизма и сверхпроводимости может быть перспективна для создания приборов сверхпроводящей спинтроники — систем, в которых носителем информации является спин электрона.

Пример такого материала — европий-железо-мышьяк (EuFeAs), допированный фосфором (Р). Это соединение примечательно тем, что парамагнитный эффект, разрушающий сверхпроводимость, в нем сильно подавлен, и электромагнитное взаимодействие доминирует. Дело в том, что ферромагнетизм в этом соединении обеспечивается локализованными электронами с 4f-оболочек европия, а сверхпроводимость — проводящими электронами с 5d-оболочек железа. И из-за особого положения атомов европия электроны проводимости слабо взаимодействуют с теми электронами, которые обеспечивают ферромагнетизм. Таким образом, эти две подсистемы практически независимы. В результате обменное поле, действующее на электроны проводимости, оказывается очень маленьким.

Из-за подавления парамагнитного эффекта ферромагнетизм и сверхпроводимость сосуществуют в EuFeAs в довольно широком диапазоне температур — этот материал представляет собой уникальную платформу для экспериментального изучения двух экзотических фаз сосуществования с доминированием электромагнитного взаимодействия.

Недавно физикам удалось экспериментально визуализировать магнитную структуру этих фаз методами магнитной силовой микроскопии. В своей работе группа теоретиков из лаборатории оптоэлектроники двумерных материалов МФТИ разработала теорию, качественно описывающую экспериментальные данные. В работе показано, как неоднородная магнитная структура с синусоидальным профилем намагниченности плавно трансформируется в структуру доменного типа при понижении температуры. Такая структура наблюдалась в эксперименте при температурах 17,8–18,25 К и получила название «мейсснеровские домены». Период структуры оказался существенно меньше, чем должен быть в обычном ферромагнетике. Это связано с влиянием сверхпроводимости. Дальнейшее охлаждение приводит к переходу первого рода в «ферромагнитное вихревое состояние», в котором вихри Абрикосова существуют на фоне магнитных доменов, — авторами были рассчитаны параметры такого перехода. Вихрь — это образование в сверхпроводнике, в сердцевине которого есть магнитное поле. Снаружи он экранируется мейсснеровскими токами. Было показано, что размер доменов в вихревом состоянии практически такой же, как в и обычном ферромагнетике. Кроме того, был предсказан новый эффект — внутри доменных стенок могут возникать вихри Абрикосова, перпендикулярные вихрям в доменах.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.